Drought is caused by a combination of various hydrological or meteorological factor, so it is difficult to accurately assess drought event, but various drought indices have been developed to interpret them quantitatively. However, the drought indexes currently being used are calculated from the lack of a single variable, which is a problem that does not accurately determine the drought event caused by complex causes. Shortage of a single variable may not be a drought, but it is judged to be a drought. On the other hand, research on developing indices using unstructured data, which is widely used in big data analysis, is being carried out in other fields and proven to be superior. Therefore, in this study, we intend to calculate the drought index by combining unstructured data (news data) with weather and hydrologic information (rainfall and dam inflow) that are being used for the existing drought index, and to evaluate the utilization of drought interpretation through verification of the calculated drought index. The Clayton Copula function was used to calculate the joint drought index, and the parameter estimation was used by the calibration method. The analysis showed that the drought index, which combines unstructured data, properly expresses the drought period compared to the existing drought index (SPI, SDI). In addition, ROC scores were calculated higher than existing drought indices, making them more useful in drought interpretation. The joint drought index calculated in this study is considered highly useful in that it complements the analytical limits of the existing single variable drought index and provides excellent utilization of the drought index using unstructured data.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.953-954
/
2013
Smartphone, Tablet PC users increases rapidly, the amount of data is an increasing number and their characteristics vary. Big Data field to collect vast amounts of data such that create new value by analyzing has attracted attention. In recent years, big data technology to use for marketing and product planning movement is growing. In this paper, we would like to analyze the trends of big data.
Communication systems, such as Switching System, are operated in the restricted conditions that the suggested events must finish in the time-constraints. Therefore, the data in the systems requires not only rapid access time, but also completion in the restricted time. Many existing data systems have been developed and used in the communication environments. But, the system construct a structural scheme and provide users with basic data services only. In recent, as the complexity of data in the communication area is rapidly increasing, it requires the data system which can represent the unstructured dataset and complete the data access in this dataset on the restricted condition. In this paper, we propose the data model which is suitable to the unstructured multi-dataset environment. The data model supports the rapid data access for unstructured dataset and enables users to easily retrieve data needed at the execution. In addition to, we define the several algorithms to clarify the structure of our model.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2015.05a
/
pp.747-753
/
2015
요즘 우리의 생활 속에서 차세대 신기술로 주목할 만한 것이 바로 "빅 데이터" 이다. 하지만 빅 데이터는 아직 구체적인 개념이 모호한 상태이다. 빅 데이터란, 기존 데이터베이스 관리도구로서 데이터를 수집, 저장, 관리, 분석할 수 있는 역량을 넘어서는 대량의 정형 또는 비정형 데이터 집합 및 이러한 데이터로부터 가치를 추출하고 결과를 분석하는 기술을 의미한다. 이러한 분석된 데이터들은 여러 방면으로 활용이 가능하다. 이를 통해 기업에서는 비즈니스적인 활용이 가능하며 예측과 분석을 통해 사업전망을 내다볼 수도 있다. 따라서 본 논문에서는 비즈니스 모델 혁신을 위해 빅 데이터 기반 예측분석이 왜 필요한 지에 대해 논의하고 기업들이 혁신을 촉진하기 위해 사업전략 목표에 예측모델들을 활용하는 운영 모델을 제시하고자 한다.
빅데이터 시대의 대두에 따라 기존의 관계형 데이터베이스로는 처리하기 어려운 형태의 데이터가 발생하였다. 이런 성질의 데이터를 저장, 활용하기 위한 방법으로 Apache 하둡이 널리 사용되고 있다. 기존의 RDBMS 상의 데이터를 하둡 데이터 분석의 원천 데이터로 활용하려고 하는 경우, 혹은 데이터 크기와 복잡도의 증가로 저장방식을 바꿔야 하는 경우 데이터를 HDFS(Hadoop Distributed File System) 으로 전송해야 한다. 본 논문에서는 정형 데이터 수집 모듈인 Sqoop과 Nosqoop4u의 개발을 통하여 데이터 전송 성능을 비교하였다.
최근 디지털 정보량의 기하급수적인 증가에 따라 대규모 데이터인 빅데이터가 등장하였다. 빅데이터는 데이터가 실시간으로 매우 빠르게 생성되며 다양한 형태의 데이터를 가지며 이 데이터를 수집, 처리, 분석을 통해 새로운 지식을 창출한다. 그러나 기존의 ETL(Exact/Transform/Load) 연구에서 이러한 빅데이터를 처리 하는데 성능 저하가 발생되고 있으며 비정형 데이터를 관리할 수 없다. 따라서 본 논문에서는 기존의 ETL 처리의 한계를 극복하기 위해서 하둡을 이용하여 ETL 상에서 처리 속도를 높이고 비정형 데이터를 처리할 수 있는 빅데이터 처리 시스템을 제안하고자 한다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.172-174
/
2002
XML을 기반으로 하는 가상문서는 다양한 데이터의 공유를 가능하게 하여 새로운 지식을 생성할 수 있도록 한다. 가상 문서를 지원하는 디지털 도서관 시스템에서 질의 링크는 인터넷 상의 정형데이터 공유를 가능하게 한다. 본 연구에서는 질의링크를 포함하는 XML- 기반 가상문서를 효과적으로 생성하기 위해 질의링크 생성기와 스키마 처리기를 설계하고 구현하였으며 이를 지원하기 위해 디지털 도서관 시스템과 가상문서 저작시스템에서 서비스 관리기, 메타 검색기, 데이터베이스 관리기와 저작도구를 확장하였다.
최근에 비정형 데이터의 잠재적 가치를 유용한 데이터로써 사용하려는 경우가 많아지고 있다. 특히 트위터는 사용자의 상태나 이벤트가 잘 나타나 있어서 하나의 사용자의 이벤트로서 간주될 수 있다. 본 논문은 트위터에서 발생하는 이벤트에 주목하여, 감기라는 이벤트를 트위터 내에서 추적하고자 한다. 추적을 위해서는 트위터를 판단할 필요가 있는데, 이를 위해 기존의 감성 사전 방식 중 하나인 통계적 사전 구축을 기반으로 키워드를 활용하여 감기 판단 사전을 구축하는 방식을 제안한다.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.20
no.5
/
pp.89-95
/
2020
As the e-learning market expands, interest in customized education for learners based on artificial intelligence is increasing. Customized education for learners requires essential components such as a large amount of data and learning contents for learner analysis, and it requires time and cost efforts to collect such data. In this paper, to enable efficient learner-tailored learning even in small learning groups, unstructured learner data was analyzed using python modules, and a learning algorithm was presented based on this. Through the analysis of the unstructured learning data presented in this paper, it is possible to quantify and measure the unstructured data related to learning, and the accuracy of more than 80% was confirmed when analyzing keywords for providing customized education for learners.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.309-309
/
2018
기후변화에 따른 강우의 규모와 발생빈도 증가로 농촌유역의 홍수 피해는 지속적으로 증가하고 있다. 하지만 우리나라의 홍수 피해 저감 대책은 도시지역의 대하천 주변으로 집중되어있으며, 소하천 및 농촌유역의 홍수 피해 저감에 대한 관리와 투자 노력은 부족한 실정이다. 특히, 최근 들어 갑작스런 집중호우 등으로 인한 농촌유역 돌발홍수 피해 사례가 증가하고 있으며, 이에 대응하기 위해서는 홍수 발생 등을 신속하게 파악하기 위한 돌발홍수 예경보 시스템 개발이 필요하다. 한편, 최근 산업의 혁신과 생산성 향상을 위한 새로운 패러다임으로 4차 산업혁명이 대두되고 있으며, 빅데이터와 인공지능 (Artificial Intelligence, AI)을 비롯하여 사물인터넷 (Internet of Things, IoT), 드론, 슈퍼컴퓨팅 등의 이른바 4차 산업혁명 기술을 활용한 연구가 수행되고 있다. 본 연구에서는 기후변화에 따른 농촌유역 홍수 피해를 저감하고 또한 사전에 대비하기 위해 빅데이터와 인공지능 등 4차 산업혁명 기술을 적용한 농촌유역 돌발홍수 예경보 시스템을 개발하고 그 적용성을 평가하고자 한다. 우선, 농촌유역의 홍수와 관련된 빅데이터 (기상 자료, 수문 자료, 기후변화 자료, 농업용 수리구조물 자료 등)를 토대로 정형 빅데이터와 비정형 빅데이터를 구분 추출하고 이를 연계 해석할 수 있는 시스템을 개발하였다. 추출한 정형 및 비정형 빅데이터를 활용하여 딥러닝을 기반으로 농촌유역의 홍수를 예측하고 홍수 예경보 기준에 따른 평가를 수행할 수 있는 시스템을 개발하였다. 과거 강우사상을 홍수 예경보 시스템에 적용하여 홍수 모의 결과를 도출하였으며, 재해연보 등과 비교 분석하여 시스템의 적용성을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.