• Title/Summary/Keyword: 정지 비행

Search Result 144, Processing Time 0.031 seconds

A Study of Method and Algorithm for Stable Flight of Drone (드론의 안정화 비행을 위한 방법 및 알고리즘에 관한 연구)

  • Cha, Gyeong Hyeon;Sim, Isaac;Hong, Seung Gwan;Jung, Jun Hee;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • Unmaned Aerial Vehical(UAV) is a flight which is automatically flying by remote control on th ground. However UAV has an advantage of control that is easy, but has an disadvantage of not hovering. By comparison, quadcopter which is one of the UAV is easily operated. Also quadcopter has hovering function and high stability. In this paper, we propose stable flight algorithm associated PID(proportional-integral-derivative) control with fuzzy contorl to implement stable quadcopter system. After getting a positioning information of the drone, This proposed system is implemented for stable flight through flight attitude control using gyro and acceleration sensor. We also propose the flight mode system to hover drone with GPS sensor.

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Choi, I.H.;Chang, B.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.45-49
    • /
    • 2008
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over-prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used as a preliminary performance analysis tool for hovering helicopter rotor blades.

PERFORMANCE ANALYSIS OF HOVERING UH-60A ROTOR BLADE (UH-60A 로터 블레이드의 정지비행 성능해석)

  • Park, Y.M.;Chang, B.H.;Chung, J.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.73-76
    • /
    • 2007
  • The present paper describes the results of performance analysis for UH-60A rotor blade in hover. For the numerical simulations, commercial CFD software, FLUENT was used with Spalart-Allmaras turbulence model. The flow solver was based on node based scheme and second order spatial accuracy options was used for simulations. For the enhancement of wake capturing capability, high resolution grid was used around tip vortex region. Granting that somewhat over prediction of thrust was observed near blade tip region, performance was well correlated with experimental data within 3% accuracy in the operating region. Finally it was shown that the present flow solver can be used for preliminary performance analysis tool for hovering helicopter rotor blades.

  • PDF

A Study on Hovering Flight Control for a Model Helicopter (모형 헬리콥터 정지비행제어에 관한 연구)

  • 심현철;이은호;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.

Ground Effect of a Rotor Blade on a Whirl Tower (훨타워 로터 블레이드의 지면효과)

  • Kang, Hee-Jung;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • A numerical simulation is performed to study the ground effect of a rotating rotor blade on a whirl tower using unstructured overset mesh. The aerodynamic change of the rotor blade by the structure around the whirl tower is also considered. The calculated results showed good agreement with the experiment for the hover performance. The ground effect of the rotor blade is investigated by comparing with the calculated results for the out of ground condition and the results of an analytic model.

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

Validation of Noise Prediction Theory Using Scaled Rotor Experiment for Hovering Condition (정지비행 조건에서의 축소 로터 실험을 통한 소음 예측 기법 검증)

  • Min, An-Ki;Ryi, Jae-Ha;Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.201-208
    • /
    • 2012
  • In this paper, a series of experiment is performed for a scaled hovering rotor in a semi-anechoic chamber and the results are compared to the noise spectra predicted by using Lowson's loading noise equation and FW-H equation. It was founded that the sound directivity pattern for both experiments and predictions are similar in their trend. Meanwhile the FW-H equation showed better agreement with experiments in the near-field noise spectra, but at the far-field the Lowson's equation performed better. The discrete noise are known to be proportional to the loading on the blades, which can be controlled by collective pitch angle of the blades. It was founded that the predicted spectra with FW-H equation come close to the measured noise spectra in low collective pitch, but in high collective pitch angles the Lowson's equation be more reliable.