• 제목/요약/키워드: 정준분석

검색결과 145건 처리시간 0.026초

중복분석의 확장과 이를 이용한 일반화 정준상관분석 (A Note on Generalized Canonical Correlation Analysis Via an Extended Redundancy Analysis)

  • 강현철;김기영
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.105-113
    • /
    • 2000
  • Wollenberg(1977)의 중복분석(redundancy analysis)을 두 개 이상의 변수집단이 주어져 있는 경우로 확장하고, 확장된 중복분석과 일반화 정준상관분석의 관계를 논의하며, 이 관계를 이용하여 새로운 형태의 일반화 정준상관분석을 제안한다.

  • PDF

가중주성분분석을 활용한 정준대응분석과 가우시안 반응 모형에 의한 정준대응분석의 동일성 연구 (Equivalence study of canonical correspondence analysis by weighted principal component analysis and canonical correspondence analysis by Gaussian response model)

  • 정형철
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.945-956
    • /
    • 2021
  • 본 연구에서는 가중주성분분석으로부터 정준대응분석을 유도하는 Legendre와 Legendre (2012)의 알고리즘을 고찰하였다. 그리고, 가중주성분분석에 기반한 Legendre와 Legendre (2012)의 정준대응분석이 가우시안 반응모형에 기초한 Ter Braak (1986)의 정준대응분석과 동일함을 다루었다. 생태학에서 종의 발현 정도를 잘 설명할 수 있는 가우시안 반응곡선에서 도출된 Ter Braak (1986)의 정준대응분석은 종 패킹 모형(species packing model)이라는 기본 가정을 사용한 후 일반화선형모형과 정준상관분석을 결합시키는 방법으로 도출된다. 그런데 Legendre와 Legendre (2012)의 알고리즘은 이러한 가정없이 Benzecri의 대응분석과 상당히 유사한 방법으로 계산되는 특징을 지닌다. 그러므로 가중주성분석에 기초한 정준대응분석을 사용하면, 결과물 활용에 약간의 유연성을 지닐 수 있게 된다. 결론적으로 본 연구에서는 서로 다른 모형에서 출발한 두 방법이 장소점수(site score), 종 점수(species score) 그리고 환경변수와의 상관관계가 서로 동일함을 보인다.

정준상관분석을 통한 다변량 금융시계열의 변동성 분석 (Multivariate Volatility Analysis via Canonical Correlations for Financial Time Series)

  • 이승연;황선영
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1139-1149
    • /
    • 2014
  • 다변량 금융시계열의 변동성분석을 다변량 기법인 정준상관분석(canonocal correaltion analysis)을 이용해 분석하였다. 변동성의 특성상 계수들이 비음(non-negative)인 정준상관분석, 즉, non-negative and sparse canonical correlation analysis (NSCCA)를 이용해 보았다. 본 논문은 다변량 시계열의 변동성 커브에 대해 연구하고 있으며 제시된 방법론을 이변량 주식자료분석을 통해 예시해 보았다.

일반화 정준상관 행렬도와 프로크러스티즈 분석을 응용한 대한테니스협회 등록 선수의 체격요인, 체력요인 및 기초기술요인에 대한 분석연구 (A Study on the Relationship between Physique, Physical Fitness and Basic Skill Factors of Tennis Players in the Korea Tennis Association Using the Generalized Canonical Correlation Biplot and Procrustes Analysis)

  • 최태훈;최용석
    • Communications for Statistical Applications and Methods
    • /
    • 제17권6호
    • /
    • pp.917-925
    • /
    • 2010
  • 일반적으로 정준상관 행렬도(canonical correlation biplot)는 정준상관분석에서 두 변수집단에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 최근에 이를 활용하여 최태훈과 최용석 (2008)은 2006년도 한국여자골프협회(KLPGA) 선수에 대한 기술요인 변수군과 경기성적요인 변수군간의 관련성을 살펴보았고 최태훈 등 (2009)은 테니스 그랜드 슬램대회 선수특성요인과 경기요인에 대한 분석을 하였다. 더군다나 세 변수군 이상의 정준상관분석을 일반화 정준상관분석(generalized canonical correlation analysis)이라 하며 이와 관련하여 허명회 (1999, 6장)는 수량화 플롯을 제안하고있다. 이를 행렬도의 의미에서 일반화 정준상관 행렬도(generalized canonical correlation biplot)라하자. 본 연구에서는 대한 테니스협회(KTA)에 등록된 남자선수들 중 상위50명의 체격요인, 체력요인 및 기초기술요인에 대한 분석을 일반화 정준상관 행렬도를 적용하여 살펴보고 프로크러스티즈 분석을 통하여 전체선수, 상위랭킹과 하위랭킹 선수간의 행렬도 형상비교를 시도 하였다.

정준 상관 분석을 이용한 잡음 섞인 음성 신호의 분리 (Segaration of Corrupted Speech Signals using Canonical Correlation Analysis)

  • 김선일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.164-167
    • /
    • 2012
  • 음성 신호와 함께 섞인 자동차 배기 소음을 서로 분리해 내는 기술은 점점 음성을 중심으로 발전해가는 인터페이스를 현실화하는데 실질적으로 필요한 기술이다. 따라서 자동차 배기음이 섞인 음성신호를 두 신호간의 독립성이 보장되지 않고 두 신호에 대한 사전 정보가 없는 상태에서 분리해 내기 위해 정준 상관 분석을 사용하여 두 신호를 분리해 내는 연구를 진행하였다. 정준 상관 분석을 이용하여 음성을 분리해 내기 위해서는 분석에 쓰이는 신호의 구성이 중요하다. 정준 상관 분석에 대해 알아보고 음성과 자동차 배기 소음이 섞인 두 개의 신호를 받아서 이를 재구성하여 정준 상관분석을 이용하여 자동차 소음과 음성을 분리해 내었다. Blind Source Separation에 쓰이는 다른 방법과 비교했을 때 독립성이 보장되지 않는 신호에 대해서도 분리가 가능하므로 응용 대상이 상대적으로 넓어 실용적 응용이 가능하다고 할 수 있다.

  • PDF

테니스 그랜드슬램대회의 선수특성요인과 경기요인에 대한 분석연구 -정준상관 행렬도와 프로크러스티즈 분석의 응용- (A Study on the Relationship between Player Characteristic Factors and Competitive Factors of Tennis Grand Slams Competition Using Canonical Correlation Biplot and Procrustes Analysis)

  • 최태훈;최용석;신상민
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.855-864
    • /
    • 2009
  • 정준상관 행렬도(canonical correlation biplot)는 정준상관분석(canonical correlation analysis)에서 두 변수 집단에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 최근에 최태훈과 최용석 (2008)는 2006년도 KLPGA 선수를 대상으로 정준상관 행렬도를 통해 기술요인변수군과 경기성적요인변수군간의 관련성을 살펴보고 군집분석을 활용하여 각 선수들의 군집을 시도하였다. 프로크러스티즈 분석(Procrustes analysis)은 두 형상(shape)의 유사성을 비교하는 데 사용되는 기법이다. 본 연구에서는 테니스 그랜드슬램대회의 선수특성요인변수군과 경기요인변수군에 대한 분석연구를 정준상관 행렬도를 적용하여 살펴보고 프로크러스티즈 분석을 통하여 행렬도 형상비교를 하였다.

정준상관 행렬도와 군집분석을 응용한 KLPGA 선수의 기술과 경기성적요인에 대한 연관성 분석 (A Study on the Relationship between Skill and Competition Score Factors of KLPGA Players Using Canonical Correlation Biplot and Cluster Analysis)

  • 최태훈;최용석
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.429-439
    • /
    • 2008
  • 정준상관 행렬도(canonical correlation biplot)는 정준상관분석에서 두 변수 집단에 의해서 측정된 다변량 자료에서 변수 집단 간의 관계와 개체들의 관계를 탐색하기 위한 2차원 그림이다. 이는 일반적으로 최용석 (2006, 1장)의 한 변수 집단에 의한 행렬자료에 대한 일반적인 행렬도를 두 변수 집단에 의한 행렬자료로 확장한 것으로 볼 수 있다. 최근에 Choi와 Kim (2008)은 개체들이 많은 대용량 자료에서 행렬도의 해석상 힘든 문제점을 지적하고 이를 극복하는 데 군집분석을 활용하는 방법을 제시하고 있다. 일반적인 행렬도에서 발생하는 대용량 자료에 대한문제는 정준상관 행렬도에서도 동일하게 발생하곤 한다. 본 연구에서는 2006년도 KLPGA 선수 중 상금 순위 상위 50명을 대상으로 정준상관 행렬도를 통해 기술요인변수군(평균 퍼팅수. 그린 적중율, 파 세이브율, 파 브레이크율)과 경기성적요인변수군(상금, 평균 타수)간의 관련성을 살펴보고 군집분석을 활용하여 각 선수들의 군집을 시도하려한다.

오믹스 자료를 이용한 정준방법 비교 (A comparison study of canonical methods: Application to -Omics data)

  • 이승수;민은정
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.157-176
    • /
    • 2024
  • 생명현상의 복잡한 시스템에 대한 이해를 위한 융합분석의 중요성이 점점 커지고 있다. 하나의 연구대상을 다양한 관점에서 관찰하여 얻게 되는 여러 데이터의 융합분석은 통해 좀 더 대상에 대한 깊은 이해를 가능하게 한다. 본 연구에서는 그중에서도 특히 하나의 샘플에서 두개의 고차원 데이터가 생성된 경우 다룰 수 있는 분석인 공관성분석과 정준상관분석을 비교하였다. 정준상관분석의 경우 고차원 데이터를 다룰 수 없는 단점이 있기에, 해당 문제를 극복하기 위하여 능형상수를 이용하는 방법(CCA-ridge)과 각 데이터의 공분산행렬을 항등행렬로 가정하여 벌점화 특이값분해를 이용한 방법(CCA-PMD) 두 가지를 고려하였으며 각 방법을 NCI60 세포주 패널에서 얻은 RNA 시퀀싱 데이터와 단백질 시퀀싱 데이터 분석에 적용하였다. 그 결과 정준상관분석의 경우 두 정준변수간의 상관관계에 좀 더 집중하는 반면 공관성분석은 각 데이터의 선형조합간의 상관관계뿐 아니라 각 선형조합의 변동성을 함께 고려함을 확인할 수 있었다. 또한 공관성분석의 경우 여러가지의 가중치행렬을 고려하여 그 결과값을 비교하고 중요 시사점을 도출하였다.

정준상관분석을 이용한 원격탐사 수치화상 분류기법의 개발 : 무감독분류기법과 정준상관분석의 통합 알고리즘 (Development of Classification Method for the Remote Sensing Digital Image Using Canonical Correlation Analysis)

  • 김용일;김동현;박민호
    • 대한공간정보학회지
    • /
    • 제4권2호
    • /
    • pp.181-193
    • /
    • 1996
  • 본 연구는 원격탐사의 수치화상분류에 적용된 바 없는 정준상관분석(Canonical Correlation Analysis)기법을 무감독분류한 위성화상데이터에 적용하여 토지피복분류하는 새로운 방법을 개발하는 것을 목적으로 한다. 개발된 분류기법은 기존의 분류기법인 최대우도분류기법에 비해 분류기준용 표본데이터 선정이 용이함을 알 수 있었다. 즉, 정준상관분석에 의한 분류결과는 분류기준용 표본데이터의 선정위치에 거의 영향을 받지 않는다. 또한 무감독분류 후 정준상관분석에 의해 결정된 각 군집의 토지피복은 최대우도분류를 위한 사전정보로 활용정보로 활용가능하다. 동일한 분류기준용 표본데이터 사용시, 무감독분류 후 정준상관분석에 의한 분류가 최대우도분류보다 분류정확도가 우수하였다. 이상과 같은 결과로 판단해 볼 때 연구에서는 시도된 분류기법은 원격탐사의 분류기법 분야에서 실용화 될 수 있으며, 나아가서는 GIS 데이터베이스 구축에 중요한 역학을 할 수 있을 것이다.

  • PDF