• 제목/요약/키워드: 정점 색칠 문제

검색결과 5건 처리시간 0.021초

Hadwiger 추측의 반증 (Disproof of Hadwiger Conjecture)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.263-269
    • /
    • 2014
  • 본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Hadwiger 추측의 반증을 제시하였다. Hadwiger 추측은 "모든 $K_k$-minor free 그래프는 k-1개의 색으로 칠할 수 있다. 즉, $K_k$-마이너를 얻으면 ${\chi}(G)=k$이다." Hadwiger 추측을 적용하여 정점 색칠을 할 경우, 먼저 NP-완전 (NP-complete)인 $K_k$-마이너를 구하여 ${\chi}(G)=k$를 결정하고, 다시 NP-완전인 정점 색칠 문제를 풀어야 한다. Hadwiger 추측을 반증하기 위해 본 논문은 정점 색칠의 정확한 해를 O(V)의 선형시간으로 구하는 알고리즘을 제시하였다. 제안된 알고리즘은 그래프의 최소 차수를 가진 정점을 최대독립집합 (MIS)으로 하고, MIS 정점의 인접 정점 간선을 삭제한 축소된 그래프에 대해 이 과정을 반복하면서 하나의 색을 가진 MIS를 얻는다. 다음으로 MIS 정점의 간선을 삭제한 축소된 그래프에 대해 동일한 과정을 수행하여 MIS의 개수가 정점 채색수 ${\chi}(G)=k$가 되는 해를 얻는다. 제안된 알고리즘을 적용하여 NP-완전 문제인 완전 색칠 (total coloring) 채색수 ${\chi}^{{\prime}{\prime}}(G)$의 해를 구하는 알고리즘을 제안하였다. 제안된 알고리즘을 $K_4$-마이너 그래프에 적용한 결과 ${\chi}(G)=4$가 아닌 ${\chi}(G)=3$을 얻었다. 결국, Hadwiger 추측은 모든 그래프에 대해 적용되지 않음을 알 수 있다. 제안된 알고리즘은 마이너를 구하지 않으며, 주어진 그래프에 대해 직접 ${\chi}(G)=k$인 독립집합 마이너를 구하여 각 독립집합 정점들에 동일한 색을 배정하는 단순한 방법이다.

화랑 문제의 최소 정점 경비원 수 알고리즘 (Minimum number of Vertex Guards Algorithm for Art Gallery Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.179-186
    • /
    • 2011
  • 본 논문은 화랑 문제의 최소 정점 경비원 수를 구하는 알고리즘을 제안하였다. n개의 사각형 방으로 구성된 화랑의 최소 경비원수는 정확한 해를 구하는 공식이 제안되었다. 그러나 단순하거나 장애물이 있는 다각형 또는 직각 다각형에 대해 최대 경비원수를 구하는 공식만이 제안되었으며, 최소 경비원수를 구하는 근사 알고리즘만이 제안되고 있다. n개의 정점으로 구성된 다각형 P에 대한 최대 정점 경비원 수를 구하는 방법은 Fisk가 다음과 같이 제안하였다. 첫 번째로, n-2개의 삼각형으로 구성된 삼각분할을 수행한다. 두 번째로 3색-정점색칠을 한다. 세 번째로 최소 원소를 가진 채색수를 정점 경비원의 위치로 결정한다. 본 논문에서는 지배집합으로 최소 정점 경비원 수를 구한다. 첫 번째로, 가능한 모든 가시적인 정점들 간에 간선을 그린 가시성 그래프를 얻는다. 두 번째로, 가시성그래프로부터 직접 지배집합을 얻는 방법과 가시성 행렬로부터 지배집합을 얻는 방법을 적용하였다. 다양한 화랑 문제에 적용한 결과 제안된 알고리즘은 단순하면서도 최소 정점 경비원 수를 얻을 수 있었다.

정점 색칠 문제의 다항시간 알고리즘 (A Polynomial Time Algorithm for Vertex Coloring Problem)

  • 이상운;최명복
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권7호
    • /
    • pp.85-93
    • /
    • 2011
  • 본 논문은 지금까지 NP-완전인 난제로 알려진 정점 색칠 문제를 선형시간 복잡도로 해결한 알고리즘을 제안하였다. 제안된 알고리즘은 그래프 G=(V,E)의 최소 채색수 ${\chi}(G)$=k를 결정하기 위해 사전에 k값을 알지 못한다는 가정에 기반하고 있다. 단지 주어진 그래프를 독립집합 $\overline{C}$와 정점 피복 집합 C로 정확히 양분하여 $\overline{C}$에 색을 배정하는 방법을 적용하였다. 독립집합 $\overline{C}$의 원소는 ${\delta}(G)$인 정점 ${\upsilon}$가, C의 원소는 정점 ${\upsilon}$의 인접 정점들 u가배정된다. 축소된 그래프 C는 다시 $\overline{C}$와 C로 양분되며, 이 과정을 C의 간선이 없을 때까지 수행한다. 26개의 다양한 그래프를 대상으로 제안된 알고리즘을 적용한 결과 정점 ${\upsilon}$를 선택하는 횟수는 정점의 수 n보다 작은 값을 나타내었으며, ${\chi}(G)$=k를 찾는데 성공하였다.

간선 색칠 문제의 다항시간 알고리즘 (A Polynomial Time Algorithm for Edge Coloring Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권11호
    • /
    • pp.159-165
    • /
    • 2013
  • 본 논문은 NP-완전 문제인 간선 색칠과 그래프 부류 결정 문제를 동시에 해결하는 O(E)의 다항시간 알고리즘을 제안하였다. 제안된 알고리즘은 최대차수-최소차수 정점 쌍 간선을 단순히 선택하는 방법으로 간선 채색수 ${\chi}^{\prime}(G)$를 결정하였다. 결정된 ${\chi}^{\prime}(G)$${\Delta}(G)$ 또는 ${\Delta}(G)+1$을 얻는다. 결국, 알고리즘 수행 결과 얻은 ${\chi}^{\prime}(G)$로부터 ${\chi}^{\prime}(G)={\Delta}(G)$이면 부류 1, ${\chi}^{\prime}(G)={\Delta}(G)+1$이면 부류 2로 분류할 수 있다. 또한, 미해결 문제로 알려진 "최대차수가 6인 단순, 평면 그래프는 부류 1이다."라는 Vizing의 평면 그래프 추정도 증명하였다.

Erdös-Faber-Lovász 추측 증명 알고리즘 (Proof Algorithm of Erdös-Faber-Lovász Conjecture)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.269-276
    • /
    • 2015
  • 본 논문은 지금까지 미해결 문제로 알려진 정점 색칠 문제에 대한 Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz 추측을 증명하였다. Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz 추측은 "k개의 $K_k$-클릭 합 교차 그래프는 k개의 색으로 칠할 수 있다". 즉, x(G)=k이다". Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz 추측을 증명하기 위해 본 논문은 교차되는 정점수와 한 정점에서 교차되는 클릭수를 구하여 모두 짝수이면 그래프의 최소 차수 ${\delta}(G)$ 정점을 최대독립집합 (minimum Independent set, MIS)에 포함시키는 방법을 적용하고, 둘 중 어느 하나가 홀수이면 최대 차수 ${\Delta}(G)$ 정점을 MIS에 포함시키는 방법을 적용하였다. 알고리즘 수행결과 얻은 MIS 개수가 x(G)=k이다. $3{\leq}k{\leq}8$$K_k$-클릭 합 교차 그래프에 대해 실험한 결과 모든 그래프에서 x(G)=k를 얻는데 성공하였다. 결국, "k개의 $K_k$-클릭 합 교차 그래프는 k개의 색으로 칠할 수 있다".는 Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz 추측은 성립함을 증명하였다.