• 제목/요약/키워드: 정전위 실험

검색결과 45건 처리시간 0.018초

고전류밀도 구리도금에서 첨가제에 따른 전기화학적 특성변화 연구 (Electrochemical Study of the Effect of Additives on High Current Density Copper Electroplating)

  • 심진용;문윤성;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권2호
    • /
    • pp.43-48
    • /
    • 2011
  • 구리의 전해정련공정에서의 최대 전류밀도는 350 A/$m^2$ 이며 생산성의 증가를 위해선 고전류밀도가 필요하다. 회전전극(RDE)을 이용하면 구리의 표면 확산층의 두께조절이 가능하게 되며 안정적인 1000 A/$m^2$의 고전류밀도 구리 도 금이 가능하게 된다. 회전 속도 400rpm조건에서 안정적인 고전류밀도 구리 도금이 가능하였다. 구리 전해정련 과정 중 구리표면의 전착특성 향상을 위해 첨가제는 thiourea와 glue가 사용된다. 고전류밀도 조건에서 첨가제의 거동을 알아보기 위 해 구리가 전착되는 영역에서 첨가제의 농도에 따른 potentiodynamic polarization 실험을 하였고, 1000 A/$m^2$ 조건에서 정전류 실험을 하였다. 동일한 선속도를 인가하기 위해 원통형 회전전극을 이용해 구리도금을 하였고, 도금층의 표면조도 측정에서 thiourea가 16 ppm 들어갔을 때 가장 낮은 조도와 안정적인 취성특성을 나타내었다. 첨가되는 glue의 양이 증가할 수록 표면 조도는 증가하였고, 구리도금층의 경도는 큰 차이가 없었다. 결정립 미세화제로 사용되는 thiourea의 첨가량의 증가에 따라 구리의 핵 성장은 미세해졌고, glue 첨가량의 증가에 따라서는 핵 성장이 영향을 받지 않았다.

마이크로전극에 의한 니켈수소전지용 수산화니켈 입자의 전기화학적 거동 (Electrochemical Behavior of a Nickel Hydroxide Particle for Ni-MH Battery by Microelectrode)

  • 김호성;오익현;이종호
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.145-149
    • /
    • 2007
  • 본 논문은 마이크로전극 측정시스템을 사용하여 니켈수소전지의 전극 소재로 사용되고 있는 수산화니켈의 단일 입자에 대해 전기화학적 평가를 수행 하였다. 즉 Carbon fiber 마이크로전극을 수산화니켈 입자 한개 위에 전기적인 접촉을 이루도록 조정하고 전기화학적 평가를 수행하였다. Cyclic Voltammetry 실험 결과 수산화니켈의 산화 환원 반응과 산소 발생 반응(OER)이 명확하게 분리 되고 있음을 확인하였으며, 전위주사속도를 증가 시킬 경우 환원 전하량은 주사 속도에 의존하지 않고 거의 일정한 수치를 보여 주고 있으나, 산화 전하량은 환원 전하량 보다 크고 주사속도 구간에서 부반응인 산소발생이 증가하고 있음을 확인했다. 그리고 Calvanostat에 의한 정전류 충방전 실험의 결과 수산화니켈 단일 입자의 방전용량은 이론용량 289 mAh/g에 근접한 수치(약 250 mAh/g)를 보여 주었으며 또한 Potential Step에 의해 단일 입자내의 수소이온 확산계수($D_{app}=3{\sim}4{\times}10^{-9}\;cm^2/s$)가 얻어졌다.

전복 Paramyosin의 분리 및 그 성질 (PARAMYOSIN OF THE ABALONE, NOTOHALIOTIS DISCUS)

  • 변재형
    • 한국수산과학회지
    • /
    • 제5권1호
    • /
    • pp.29-38
    • /
    • 1972
  • 복족류 근육단백질을 다른 연분동물의 그것과 비교생화학적으로 검토하고져 전복을 선정하여 근육단백질의 조성을 측정하고 그 주요 구성단백질인 paramyosin을 정열 단리하여 몇가지 생물물리화학적인 성질에 관하여 실험하였다. 전복근육의 단백조성은 수용성구분 $19\~22\%$, 염용성구분 $27\~39\%$, 알카리 가용성구분 $20\~26\%$, 그리고 stroma $20\~28\%$이었다. 염용성구분은 초원심분석에서 Paramyosin이 약 $65\%$, actomyosin이 약 $30\%$, myosin이 약$5\%$로서 이루어져 있음을 알았다. 그리고 초원심분석상 균질의 단일 표품으로 판명 분리된 본 실험에서의 전복 Paramyosin은 침항정수($S^{\circ}\;_{20,\;{\omega}$) 3.14s, 정전염용 $0.35{\mu}$ 이상, $25^{\circ}C$에서의 고유점도는 3.1이었고, 한편 동 Paramyosin은 염석분석에서 이 단백질의 염석절위가 $18\~30\%$이었다. 그리고 아미노산 분석결과, 구성아미노산은 arginine, aspartic acid, glutamic acid등이 많이 함유되어 있고, proline과 tryptophane이 흠여되어 있는 점 등 2매패류의 아미노산조성과 비슷하였으나, Iysine/arginine의 비는 0.61로서 2매패류보다 낮았다.

  • PDF

$HfO_2/Si$시스템의 계면산화막 및 고유전박막의 특성연구 (Properties of the interfacial oxide and high-k dielectrics in $HfO_2/Si$ system)

  • 남서은;남석우;유정호;고대홍
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2002년도 정기총회 및 추계학술연구발표회
    • /
    • pp.45-47
    • /
    • 2002
  • 반도체 소자의 고집적화 및 고속화가 요구됨에 따라 MOSFET 구조의 게이트 절연막으로 사용되고 있는 SiO₂ 박막의 두께를 감소시키려는 노력이 이루어지고 있다. 0.1㎛ 이하의 소자를 위해서는 15Å 이하의 두께를 갖는 SiO₂가 요구된다. 하지만 두께감소는 절연체의 두께와 지수적인 관계가 있는 누설전류를 증가시킨다[1-3]. 따라서 같은 게이트 개패시턴스를 유지하면서 누설전류를 감소시키기 위해서는 높은 유전상수를 갖는 두꺼운 박막이 요구되는 것이다. 그러므로 약 25정도의 높은 유전상수를 갖고 5.2~7.8 eV 정도의 비교적 높은 bandgap을 갖으며, 실리콘과 열역학적으로 안정한 물질로 알려진 HfO2[4-5]가 최근 큰 관심을 끌고 있다. 본 연구에서는 HfO₂ 박막을 실제 소자에 적용하기 위하여 전극 및 열처리에 따른 HfO₂ 박막의 미세구조 및 전기적 특성에 관한 연구를 수행하였다. 이를 위해, HfO₂ 박막을 reactive DC magnetron sputtering 방법으로 증착하고, XRD, TEM, XPS를 사용하여 ZrO₂ 박막의 미세구조를 관찰하였으며, MOS 캐패시터 구조의 C-V 및 I-V 특성을 측정하여 HfO₂ 박막의 전기적 특성을 관찰하였다. HfO₂ 타겟을 스퍼터링하면 Ar 스퍼터링에 의해 에너지를 가진 산소가 기판에 스퍼터링되어 Si 기판과 반응하기 때문에 HfO₂ 박막 형성과 더불어 Si 기판이 산화된다[6]. 그래서 HfO₂같은 금속 산화물 타겟 대신에 순수 금속인 Hf 타겟을 사용하고 반응성 기체로 O₂를 유입시켜 타겟이나 시편위에서 high-k 산화물을 만들면 SiO/sub X/ 계면층을 제어할 수 있다. 이때 저유전율을 갖는 계면층은 증착과 열처리 과정에서 형성되고 특히 500℃ 이상에서 high-k/Si를 열처리하면 계면 SiO₂층은 증가하는 데, 이것은 산소가 HfO₂의 high-k 박막층을 뚫고 확산하여 Si 기판을 급속히 산화시키기 때문이다. 본 방법은 증착에 앞서 Si 표면을 희석된 HF를 이용해 자연 산화막과 오염원을 제거한 후 Hf 금속층과 HfO₂ 박막을 직류 스퍼터링으로 증착하였다. 우선 Hf 긍속층이 Ar 가스 만의 분위기에서 증착되고 난 후 공기중에 노출되지 않고 연속으로 Ar/O₂ 가스 혼합 분위기에서 반응 스퍼터링 방법으로 HfO₂를 형성하였다. 일반적으로 Si 기판의 표면 위에 자연적으로 생기는 비정질 자연 산화막의 두께는 10~15Å이다. 그러나 Hf을 증착한 후 단면 TEM으로 HfO₂/Si 계면을 관찰하면 자연 산화막이 Hf 환원으로 제거되기 때문에 비정질 SiO₂ 층은 관찰되지 않았다. 본 실험에서는 HfO2의 두께를 고정하고 Hf층의 두께를 변수로 한 게이트 stack의 물리적 특성을 살펴보았다. 선증착되는 Hf 금속층을 0, 10, 25Å의 두께 (TEM 기준으로 한 실제 물리적 두께) 로 증착시키고 미세구조를 관찰하였다. Fig. 1(a)에서 볼 수 있듯이 Hf 금속층의 두께가 0Å일때 13Å의 HfO₂를 반응성 스퍼터링 방법으로 증착하면 HfO₂와 Si 기판 사이에는 25Å의 계면층이 생기며, 이것은 Ar/O₂의 혼합 분위기에서의 스퍼터링으로 인한 Si-rich 산화막 또는 SiO₂ 박막일 것이다. Hf 금속층의 두께를 증가시키면 계면층의 성장은 억제되는데 25Å의 Hf 금속을 증착시키면 HfO₂ 계면층은 10Å미만으로 관찰된다. 그러므로 Hf 금속층이 충분히 얇으면 플라즈마내 산소 라디칼, 이온, 그리고 분자가 HfO₂ 층을 뚫고 Si 기판으로 확산되어 SiO₂의 계면층을 성장시키고 Hf 금속층이 두꺼우면 SiO/sub X/ 계면층을 환원시키면서 Si 기판으로의 산소의 확산은 막기 때문에 계면층의 성장은 억제된다. 따라서 HfO₂/Hf(Variable)/Si 계에서 HfO₂ 박막이 Si 기판위에 직접 증착되면, 순수 HfO₂ 박막의 두께보다 높은 CET값을 보이고 Hf 금속층의 두께를 증가시키면 CET는 급격하게 감소한다. 그러므로 HfO₂/Hf 박막의 유효 유전율은 단순 반응성 스퍼터링에 의해 형성된 HfO₂ 박막의 유전율보다 크다. Fig. 2에서 볼 수 있듯이 Hf 금속층이 너무 얇으면 계면층의 두께가 두꺼워 지고 Hf 금속층이 두꺼우면 HfO₂층의 물리적 두께가 두꺼워지므로 CET나 EOT 곡선은 U자 형태를 그린다. Fig. 3에서 Hf 10초 (THf=25Å) 에서 정전 용량이 최대가 되고 CET가 20Å 이상일 때는 high-k 두께를 제어해야 하지만 20Å 미만의 두께를 유지하려면 계면층의 두께를 제어해야 한다.

  • PDF

리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성 (Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures)

  • 권지윤;류지헌;김준호;채오병;오승모
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.116-122
    • /
    • 2010
  • DC magnetron 스퍼터링을 이용해 구리(Cu) 호일 위에 실리콘(Si)을 증착한 후 $800^{\circ}C$에서 열처리하여 $Cu_3Si$를 얻고, 이의 리튬 이차전지용 음극으로서 특성을 조사하였다. $Cu_3Si$는 Si 성분을 포함하고 있으나 상온에서 리튬과 반응하지 않았다. 선형 주사 열-전류(linear sweep thermammetry, LSTA) 실험과 고온 충방전 실험을 통하여, 상온에서 비활성인 $Cu_3Si$$85^{\circ}C$ 이상에서는 활성화되어 Si 성분이 전환(conversion)반응에 의해 리튬과 반응함을 확인하였다. $Cu_3Si$에서 분리된 Si는 $120^{\circ}C$에서 Li-Si 합금 중에서 리튬의 함량이 가장 많은 $Li_{21}Si_5$ 상까지 리튬과 반응함을 유사 평형 조건(quasi-equilibrium)의 실험으로부터 알 수 있었다. 그러나 정전류 조건($100\;mA\;{g_{Si}}^{-1}$)에서는 리튬 합금반응이 $Li_{21}Si_5$까지 진행되지 못하였다. 또한 $120^{\circ}C$에서 전환반응에 의해 생성된 Li-Si 합금과 금속 상태의 Cu는 충전과정에서 다시 $Cu_3Si$로 돌아감, 즉 $Cu_3Si$와 리튬은 가역적으로 반응함을 확인하였다. $120^{\circ}C$에서 $Cu_3Si$ 전극은 비정질 실리콘 전극보다 더 우수한 사이클 특성을 보여 주었다. 이는 비활성인 구리가 실리콘의 부피변화를 완충하여 집전체에서 탈리되는 현상을 완화하고 결과적으로 전극이 퇴화하는 것을 억제하기 때문인 것으로 설명할 수 있다. 실제로 비정질 실리콘 전극은 충방전 후에 실리콘 층의 균열과 탈리가 관찰되었으나, $Cu_3Si$ 전극에서는 이러한 현상이 관찰되지 않았다.