• Title/Summary/Keyword: 정적 성능시험

Search Result 160, Processing Time 0.032 seconds

Strengthening Capacity of Bridge Deck Strengthened with Carbon Fiber Rod and Polymer Mortar (고강도 폴리머 모르타르 및 탄소섬유 봉(Rod)으로 보강된 교량 바닥판의 보강성능)

  • Sim Jongsung;Moon Do-Young;Ju Mm-Kwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.213-220
    • /
    • 2004
  • This paper deals with an enhanced structural capacity of reinforced concrete bridge deck strengthened with carbon fiber rod (CFR) which is subjected to monotonic and cyclic loads. Strengthening variables considered in this test were evenly and unevenly strengthening type. To evaluate strengthening capacity for these two strengthening types, load-carrying capacity and crack and failure pattern from the failure test were analyzed and fatigue response were examined. According to the test results, all the strengthened specimens showed punching shear failure as a result of premature failure of bonding interface between mortar and concrete. In the case of strengthening capacity, it was observed that the strengthened specimens was more effective in strength, stiffness and fatigue endurance limit than the unstrengthened specimen. In addition, the unevenly strengthening method (CR-UE) was more effective than the evenly strengthening method (CR-E).

Analytical Study on the Pullout Resistance Characteristics of Bored Pile (매입말뚝의 인발저항특성에 관한 연구)

  • Park, Jong-Bae;Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Structural experiment result showed that PHC(d=600mm) Pile used as a common compression member could resist 83.6 ~ 91.6 tonf of ultimate tension force, if the adhesion of P.C. bar of PHC pile to the concrete foundation is strengthened. Considering a proper safety factor to ultimate tension strength, PHC pile can substitute the anti-floating anchor, or reduce the number of anchors. For this purpose, pullout resistance behavior of a Bored pile embedded in real ground as well as structural tension strength of PHC pile must be evaluated. This study performed the static pullout tests to evaluate the pullout behavior of bored pile, and compared the test results with design value of side resistance. To evaluate the pullout resistance easily, static pullout test results were compared with dynamic loading test results using PDA. As a result, cement paste of the bored pile was hardened which is after 15 days, LH side resistance design value corresponded well to the Static pullout test results, also to the side resistance evaluated by dynamic loading test.

Mechanical Performance Evaluation of RC Beams with FRP Hybrid Bars under Cyclic Loads (FRP 하이브리드 보강근을 가지는 RC보의 반복하중에 대한 역학적 성능 평가)

  • Hwang, Chul-Sung;Park, Jae-Sung;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • In the present work, a mechanical performances under cyclic loading in RC (Reinforced Concrete) beams with normal steel and FRPH (Fiber Reinforced Plastic Hybrid) bar are investigated. For the work, RC beam members with $200{\times}200{\times}2175mm$ of geometry and 24 Mpa of design strength are prepared, and 4-point-bending tests are performed for evaluation of cracking, yielding, and ultimate loads. Through static loading test, 48.9kN and 36.0 kN of yielding loads are measured for normal RC and FRPH beam, respectively. They have almost same ultimate load of 50.0 kN. Typical tension hardening behavior is observed in FRPH beam, which is caused by the behavior of FRPH bar with tension hardening. In cyclic loading conditions, FRPH beam has more smaller crack width and scattered crack pattern, and it shows more elastic recovery than normal RC beam. The energy dissipation ratio in FRPH beam is 0.83, which is greater than 0.62 in normal RC beam and it shows more effective resistance to cyclic loadings.

Assessment of Slip Sinkage of an Off-Road Tracked Vehicle from Model Track Experiments (모형궤도시험을 통한 야지궤도차량의 슬립침하 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.49-59
    • /
    • 2018
  • When a tracked vehicle travels off-road, shearing action and ground sinkage occur on the soil-track interface and severely affect tractive performance of the tracked vehicle. Especially, the ground sinkage, which is induced by vehicle's weight (hereinafter referred to as static sinkage) and longitudinal forces in the direction of travel producing slip (hereinafter referred to as slip sinkage), develops soil resistance, directly restricting the tractive performance of an off-road tracked vehicle. Thus, to assess the tractive performance of an off-road tracked vehicle, it is imperative to take both of static sinkage and slip sinkage into consideration. In this research, a series of model track experiments was conducted to investigate the slip sinkage which has not been clarified. Experiment results showed that the slip sinkage increased with increasing the slip ratio, but the increasing rate gradually decreased. Also, the slip sinkage was found to increase as relative density of soil decreased and imposed vertical load increased. From the experiment results, the normalized slip sinkage defined as slip sinkage to static sinkage calculated in the identical condition was investigated, and an empirical equation for the slip sinkage was developed in terms of slip ratio, which allows vehicle operators to predict the slip sinkage in a given soil and operating conditions.

Development of Attitude Heading Reference System based on MEMS for High Speed Autonomous Underwater Vehicle (고속 자율 무인잠수정 적용을 위한 MEMS 기술기반 자세 측정 장치 개발)

  • Hwang, A-Rom;Ahn, Nam-Hyun;Yoon, Seon-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.666-673
    • /
    • 2013
  • This paper proposes the performance evaluation test of attitude heading reference system (AHRS) suitable for small high speed autonomous underwater vehicle(AUV). Although IMU can provides the detail attitude information, it is sometime not suitable for small AUV with short operation time in view of price and the electrical power consumption. One of alternative for tactical grade IMU is the AHRS based micro-machined electro mechanical system(MEMS) which can overcome many problems that have inhibited the adoption of inertial system for small AUV such as cost and power consumption. A cost effective and small size AHRS which incorporates measurements from 3-axis MEMS gyroscopes, accelerometers, and 3-axis magnetometers has been developed to provide a complete attitude solution for AUV and the attitude calculation algorithm is derived based the coordinate transform equation and Kalman filter. The developed AHRS was validated through various performance tests as like the magnetometer calibration, operating experiments using land mobile vehicle and flight motion simulator (FMS). The test of magnetometer calibration shows the developed MEMS AHRS is robust to the external magent field change and the test with land vehicle proves the leveling error of developed MEMS AHRS is below $0.5^{\circ}/hr$. The results of FMS test shows the fact that AHRS provides the measurement with $0.5^{\circ}/hr$ error during 5 minutes operation time. These results of performance evaluation tests showed that the developed AHRS provides attitude information which error of roll and pitch are below $1^{\circ}$ and the error of yaw is below $5^{\circ}$ and satisfies the required specification. It is expected that developed AHRS can provide the precise attitude measurement under sea trial with real AUV.

A Study on the Technique for Dynamic Firing Test of Propulsion System of Personal Surface to Air Missile (휴대용 대공 유도무기 추진시스템의 동적연소시험 기법 연구)

  • 김준엽;한태균;김인식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.19-28
    • /
    • 2000
  • In general the data such as thrust, pressure, temperature and combustion time are measured in developing the propulsion system of solid rocket motor through static firing test. But in the case of personal surface to air missile there are required a severe safety specifications in order to eliminate gunner hazard from the exhaust plume of motors. The safety requirements lead to the design of separation device and safety igniter device. The dynamic firing test for the designed two devices should be conducted under the flight environmental conditions to verify the requirements compliance. In this study the technique for dynamic firing test of propulsion system of personal surface to air missile is proposed and the method to design the dynamic test bench is also studied.

  • PDF

Dynamic Behaviors of Behavior Piles and Countermeasures to Improve Their Seismic Performance Using Shaking Table Tests (진동대 모형실험을 이용한 경사말뚝의 동적 거동 분석과 내진성능 향상을 위한 보강기법 개발)

  • Hwang Jae Ik;Lee Yong Jae;Han Jin Tae;Kim Myoung Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.105-111
    • /
    • 2005
  • Shaking table tests are performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance of the batter pile. First of all, this study demonstrates how batter piles and vertical piles behave under static lateral loadings. Secondly, the vulnerability of batter plies under dynamic lateral loadings is demonstrated showing the axial forces and bending moments mobilized at the pile heads during shaking table tests. Thirdly, countermeasures to overcome the vulnerability of behavior piles during earthquakes are pursued. The countermeasures investigated in this study include introduction of a rubber element at the pile head and the deck plate connection, and introduction of hinge connection. Finally, the slope of batter piles which induces the minimum pile forces during the dynamic loadings are investigated and found to be 8:3 (Vertical to Horizontal).

Design and evaluation of renovated NSI T/O PC sleeper (개량형 NSI 분기기용 PC침목 설계와 성능평가)

  • Park, Choon-Bok;Kwon, Ho-Jin;Lee, Young-Sou;Yoon, Byung-Hyun;Shin, Won-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1129-1137
    • /
    • 2007
  • 50kg NSI PCT(Prestress Concrete Timber, sleeper) is developed for the purpose of low maintenance cost, Extend life cycle, Track stability, Friendly Environment, Good running quality. In this study, as a part of research which is to make renovated NSI turnout, the main objective of this study is the optimization of PC sleeper's section, the number of PS tension wire. For this purpose, the finite element analysis was conducted to evaluate the serviceability and the safety of NSI PC sleeper developed.

  • PDF

Effects of Semi-Rigid Connection and Foundation Type on Static Behavior of Plastic Greenhouse (부재 교차부와 기초 조건이 비닐하우스의 정적거동에 미치는 영향)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Lee, Eung-Ho;Woo, Jong-Gyu;Lee, Jae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.61-62
    • /
    • 2011
  • 비닐하우스는 매우 세장한 강관부재들을 교차 결합하여 조립한 철골 구조물의 한 종류이다. 현행 설계기준으로 단동 비닐하우스의 최대 구조성능은 풍하중 40m/s, 설하중 50cm에 달한다. 그러나 설계 단계에서는 부재들의 교차결합 특성 및 부재가 직접 지반에 삽입되는 기초의 특성이 적합하게 반영되지 않는 문제점이 있다. 따라서 가력시험을 통하여 반강접 특성을 갖는 부재 교차부 및 지반삽입기초 조건이 구조물의 거동에 미치는 영향을 분석하였다. 부재 교차부가 강접 조건일 경우와 비교하여 교차부가 반강접일 경우에는 재하지점의 수평강성이 최대 54% 작게 나타났으나 주변 교차절점들에서의 에너지 흡수로 인하여 재하지점과 수평으로 3m 떨어진 지점에서는 반대로 최대 39% 큰 값을 보였다. 지반삽입기초의 경우에는 고정조건과 비교하여 재하지점의 수평강성이 최대 32% 작게 나타났으며, 지점부에서는 기초 조건의 영향으로 최대 26%의 휨강성 증가 효과를 보였다. 부재 교차부와 기초 조건이 구조물의 정적거동에 미치는 영향을 확인하였으나 최대내력과 강성 산정을 통한 구조성능 평가 방법의 개발이 필요할 것으로 판단된다.

  • PDF

Integrated System Development of Automobile Seat Frame Using Parameter Technique (매개변수를 이용한 자동차 좌석 프레임의 통합시스템 개발)

  • 임오강;이진식;김윤근;김창식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.1
    • /
    • pp.57-64
    • /
    • 2001
  • 일반적으로 기계부품의 설계는 부품의 설계, 해석, 그리고 시제품에 대한 성능변화를 통해서 수행된다. 이와 같은 방식의 설계는 여러 번의 시행착오에 따른 개발경비와 개발기간이 많이 소요되고 각 단계를 수행시킬 전문인력도 필요하므로 현재 산업현장에서 요구되는 신속하고 저렴한 제품개발에 적합하지 않다. 이를 해결할 수 있는 한 가지 방법으로 각 개발과정을 하나의 시스템에서 제어할 수 있는 통합시스템을 개발하는 것이다. 이런 통합시스템은 특정 제품에 대한 전용시스템이 될 가능성이 크지만 통합시스템을 구축하는 기법은 일반적인 제품들에 대해서도 적용이 가능하다. 본 논문에서는 자동차의 부품 중에서 좌석의 프레임 설계를 수행하는 통합시스템을 구축한다. 자동차 좌석은 법규에 규정되어 있는 강도와 강성을 만족해야 하므로 본 통합시스템에서는 정적조건 강도시험인 헤드레스트 테스트를 통해서 좌석을 설계한다. 그리고 통합시스템은 UNIX환경에서 C언어를 이용해 좌석 모델의 생성과 정적 성능평가를 수행할 상용프로그램들을 제어하며, 그래픽 환경은 Motif로 구현한다.

  • PDF