• Title/Summary/Keyword: 정수처리공정

Search Result 294, Processing Time 0.02 seconds

서울시 막 여과 고도정수처리 기술개발 연구

  • 이규성
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.33-45
    • /
    • 2004
  • 목적 : 21세기형 환경 친화적인 고도정수처리기술, 제균, 제탁, 소득부산물 저감 위한 최적기술로 각광받는 기술, 기존 정수처리공정과의 경제성 비교 및 막 운영관리 기술축적. 참여 5개 대표업체 : 데그레몽(프랑스 : Aquasouce 막), 대우건설(일본 : Asahikasei 막), 태영(미국 : US Filter 침지막), 비룡(일본 : Toray 막), 한화(캐나다 : Zeeweed 침지막)(중략)

  • PDF

Biological Activated Carbon (BAC) Process in Water Treatment (정수처리에서의 생물활성탄 공정)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Roh, Jae-Soon;Yoo, Pyong-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.308-323
    • /
    • 2009
  • This review paper serves to describe the composition and activity of biological activated carbon (BAC) biofilm which is considered as a progressive process for water treatment. As well as several physical-chemical, biochemical and microbiological analysis methods for characterizing the composition and activity of BAC biofilm, the ability of the biofilm to remove and biodegrade organic matters and pollutants related to other water treatment processes such as pre-ozonation will be reviewed. In this paper, conversion of GAC into BAC, removal mechanism of pollutants, characteristics and affecting factors of BAC biofilm, and modeling of BAC are described in detail. In addition, strategies to control the growth of the BAC biofilm, such as varying the nutrient loading rate, altering the frequency of BAC filter backwashing and applying oxidative disinfection, will be dwelled on related to their respective process control challenges.

Characteristics of Coagulation-Flocculation-Sedimentation Process with BAF Process on Drinking Water Treatment using Nakdong River Water (BAF와 연계한 응집.침전공정에 의한 정수처리 특성)

  • Ko, Su-Hyun;Choi, Jeung-Woo;Hyun, Kil-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 2000
  • 최근에 경제성장과 생활향상에 따른 물수요량이 급증함과 동시에 소비자의 질적요구가 강화되고 있는 실정이다. 기존 상수원인 하천의 수질오염으로 인하여 소비자의 요구사항을 충족시키기 위해서는 기존 정수처리법의 개선이 요구된다. 따라서 본 연구에서는 기존 급속여과법의 전염소 처리공정 및 응집.침전 공정의 개선을 통하여 음용수 수질을 개선하고자 하였다. 전염소 대신에 적용한 생물막여과 공정(BAF)의 처리효과 및 응집.침전 공정의 경우는 교반강도에 따른 침전효과에 따른 수질특성을 조사하였다. BAF공정은 탁월한 $NH_4$-N의 제거를 통하여 후속공정에 대한 오염부하량을 저감시킬수 있었고, 응집.침전의 경우 본 연구에서 제안한 응집제 주입량에 따른 교반강도의 실험식인에 의하여 구한 최적교반강도용 용집공정에 적용시 응집.침전의 효과를 향상시킨 수 있어 음용수 수질 향상을 기대 할 수 있었다.

  • PDF

A Study on Characterization of Formation and Reduction of THMs in Water Treatment Process (정수처리공정별 THMs 발생특성과 저감방안에 대한 연구)

  • Ka, Gil-Hyun;Bae, Min-Ho;Lee, Jun-Ho;Ahn, Chi-Hwa;Han, Ihn-Sup;Min, Byung-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.721-728
    • /
    • 2008
  • DBPs(Disinfection By-Products) are most formed through the reactions between chlorine and NOM(Natural Organic Matter) in water treatment. In this study, occurrence of DBPs including THMs(Trihalomethanes) is evaluated. Also, influencing factors by the seasons and raw water quality were investigated for correlation among them and the characteristics of THMs formation by prechlorination process. This study investigated the operation condition for THMs removal depending on raw water quality. Water treatment plant from intake station to gauging well flows for about 10 hours in Y Water Supply Office. It is limited to control of THMs formation because of excessive reaction time between chlorine and THMs precursors in the intake station. Therefore, as multi-points prechlorination from intake station to gauging well, THMs formation was decreased in the water treatment, and it was willing to prevent overdosage of chlorine. The concentration of THMs was 0.021 mg/L in the summer, 0.015 mg/L in the winter, respectively. Also, THMs formation showed that 0.013 mg/L in the water of gauging well after prechlorination, 0.014 mg/L in the flocculation/sedimentation/filtration, 0.016 mg/L in the water after postchlorination, respectively. THMFP(Trihalomethane Formation Potential) removed 42.7% and 50% through the flocculation/sedimentation and filtration, respectively, and it is similar TOC removal efficiency. In this study, multi-points prechlorination from intake station to gauging well decreases in contact time and concencrations of NOM and chlorine. Also, it decreases in THMs and amount of chlorine uesd. In the result of multi-points prechlorination in the summer, the concentration of THMs was 0.013mg/L in the treated water. In view of these facts, THMs formation can be decreased approximately 50%.

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

부식질 존재하에서 PAC-UF 시스템을 이용한 미량유기물의 제거

  • 이승진;이정학
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.64-66
    • /
    • 1996
  • 원수 중의 오염물의 양과 종류가 급격히 증가함에 따라 기존의 정수방법은 점차 그 한계를 노출하고 있다. 이러한 문제점의 대안으로 최근 막분리기술을 도입한 고도정수처리공정이 주목되고 있다. 역삼투(reverse osmosis)와 나노여과(nanofiltration)등의 분리막을 이용한 정수처리 공정에 대한 연구가 활발히 진행되어 왔으나, 경제성이 보다 큰 한외여과(ultrafiltration, UF)와 부날활성탄(powdered activated carbon, PAC)의 결합 시스템의 도입이 연구되고 있다. 따라서 본 연구에서는 PAC-UF 시스템의 유입수에 배경물질(background organic matters, BOM)을 포함한 이성분계에서 미량유기물의 경쟁적 흡착 거동을 고찰하였다.

  • PDF

Distribution of Uranium in the Han River and Behavior through the Water Treatment Process (우라늄(Uranium)의 한강수계내 분포와 정수처리 공정별 거동 특성)

  • Jeong, Gwan-Jo;Kim, Dok-Chan;Park, Hyeon;Oh, Sea-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • This research was focused on the distribution of Uranium-238 concentration in the Han River. Also, six water treatment plants in Seoul have been investigated to find out the behaviour and the removal capability of uranium. The uranium concentrations were ranged $0.02{\sim}0.54{\mu}g/L$ in the Han River. The relationship between conductivity and total dissolved solids shows that uranium concentration is positively related with conductivity and total dissolved solids. In addition, it has been founded that there was no relevance between uranium concentration and geological structure, because most of the sampling area are Banded Gneiss. The average uranium concentration in six water treatment plants was determined to $0.134\;{\mu}g/L$ in raw water, $0.050\;{\mu}g/L$ in coagulated water, $0.029\;{\mu}g/L$ in settled water, $0.020\;{\mu}g/L$ in filtered water, $0.019\;{\mu}g/L$ in finished water. After filtration in the treatment process, uranium concentration level was maintained lower than $0.029\;{\mu}g/L$. The average uranium removal efficiency compared to the raw water was 63% after coagulation, 15% after sedimentation, 8% after filtration and disinfection. The analysis shows that 78% of uranium in the raw water was removed during coagulation and sedimentation processes. However, 8% of that was removed through filtration and chlorination processes.

정수처리에 있어서 한외여과막의 Fouling에관한 연구

  • 김충환
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.18-21
    • /
    • 1995
  • 막분리에 의한 정수처리에서는 재래식의 응집, 침전, 여과공정을 대신하는 고액분리공정으로서 이용되고 있다. 이러한 막분리를 이용한 정수처리에는 한외여과막 및 정밀여막이 주로 이용되고 있으며, 이러한 막을 이용하므로써 원수중의 고분자성유기물질, 콜로이드물질등을 제거할수 있다. 그러나 미량유기물질과 같은 저분자성물질은 한외여과 및 정밀여과같은 정도의 배제 크기를 가지는 막으로는 분리할수 없다. 따라서 한외여과막 및 정밀여과막으로 분리할수없는 물질들은 역삼투막을 이용하고 있다. 이러한 막을 이용하므로써 응집제의 절약, 부지면적의 절감, 무인운전 및 응집제를 이용하지 않으므로써 알루미늄에의해 기인하는 치매병을 방지할수 있는등 여러가지의 장점이 있다. 특히 분리막을 이용한 정수처리는 프랑스, 미국, 일본 등을 중심으로 연구 개발되었다.

  • PDF

Fractionation of DOC and its Correlation to AOX(FP) in the Advanced ater Treatment Process (고도정수처리 공정에서 DOC 분획 특성 및 AOX(FP)와의 관계)

  • Lee, Byung-Cheun;Choi, Kyung-Hee;Choi, Ja-Yoon;Lee, Chul-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.909-918
    • /
    • 2009
  • As a part of dissolved organic matter, dissolved organic carbon (DOC) or biodegradable DOC (BDOC) fraction in particular is one of important issues in water treatment. Due to role as a nutrient source for bacteria, BDOC, therefore, may cause regrowth problems in water distribution system. The main objectives of this study were to investigate the possibility to minimize the concentration of BDOC in advance water treatment process. DOC in water is fractionized into four fractions such as AnBDOC (adsorbable and non-biodegradable DOC) which possesses adsorption properties but no biodegradation ability; nABDOC (biodegradable and non-adsorbable DOC) which has biodegradation properties but no adsorption ability; ABDOC (adsorbable and biodegradable DOC) which has adsorption properties and biodegradable characteristic; and non-removal DOC (nAnBDOC) which do not have either adsorbability or biodegradability. BAC process was effective for adsorbable DOC (AnBDOC+ABDOC) removal. However, in some cases, the removal ratio of adsorbable DOC was not sufficient. BDOC removal rate is very low or irremovable. Thus, for the control of residual DOC, it is necessary to change the operation condition by BAC process. From the analysis results of DOC fractions, water treatment processes appeared to be effective because it could grasp a remarkable amount of biodegradable, adsorbable and non-removal DOC. The concentration of AOX in non-prechlorination process was reduced from 7.1 ${\mu}g$/L to 0.51 ${\mu}g$/L in BAC process followed by ozonation.

Investigation of Treatment Efficiency for Advanced Processes of Water Treatment Plants in Korea (국내 정수장 고도정수처리 공정에서 공정별 처리효율 조사)

  • Mun, Sung-Min;Choi, Suing-Il;Sohn, Jin-Sik;Yoon, Je-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • Advanced processes such as ozonation or activated carbon filtration (ACF) in water treatment plants have been used in Korea since 1994. At present, seventeen drinking water treatment plants are currently operating. This survey compares the treatment performance of advanced processes in eight plants which have comparable water quality data. The three parameters (DOC, $UV_{254}$, and $KMnO_4$ consumption) of water quality were selected as an indicator of treatment efficiency. The treatment efficiency of ozonation and ACF processes was found to vary with large deviations in each plant. Treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption by post ozonation ranged from 3 to 11%, 6 to 33%, and 12 to 28% respectively. On the other hand, for ACF, treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption ranged from 7 to 38%, 8 to 48%, and 16 to 66% respectively. These large deviations indicate the advanced processes of water treatment plants to be further optimized.