• Title/Summary/Keyword: 정수위 투수시험

Search Result 20, Processing Time 0.026 seconds

Compressive Strength and Healing Performance of Mortar Using Self-healing Inorganic Materials (자기치유형 무기계 혼합재를 사용한 모르타르의 압축강도 및 치유성능)

  • Hyung-Suk, Kim;Woong-Jong, Lee;Sung, Choi;Kwang-Myong, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.577-583
    • /
    • 2022
  • In this study, the characteristics of self-healing mortars produced using an inorganic self-healing material consisting of ground granulated blast furnace slag, expansion agent, and anhydrite, were investigated. For three types of self-healing mortars with different amounts of the inorganic healing material, compressive strength was measured and the self-healing performance was evaluated through the constant water head permeability test. The healing rate and equivalent crack width according to crack-induced aging were used as indicies of healing performance evaluation. Considering the development of compressive strength of the self-healing mortars, the change in the healing rate with healing periods, and the economic feasibility, the optimal amount of inorganic self-healing materials was suggested as 20 % of the mass of cement.

Effects of Waste Leachate on Permeability of Marine Clay (해성점토의 투수성에 대한 폐기물 침출수의 영향)

  • 강병희;장경수
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 1995
  • The laboratory hydraulic conducti vita tests with rigid wall permeameter were performed to study the effects of waste leachate on the permeability of a marine clay. The marine clay and waste leachate for this study were sampled from Kimpo Wastefills, and the hydraulic gradients applied to the clay specimens aTe relatively high from 37.5 to 225. The test results show that the permeability of a marine clay is increased with increasing the concentration of leachate and with decreasing the hydraulic gradient. And also both the liquid limit and the plasticity index of the marine clay miRed with waste leachate decrease with increasing the concentration of leachate.

  • PDF

Estimation Method of Infiltration Capacity for Assessment of Drainage Capacity I (배수성능 평가를 위한 침투능 산정기법에 관한 연구 I)

  • Jeong, Jisu;Shim, Jeonghoon;Hwang, Youngcheol;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.49-55
    • /
    • 2019
  • Slope failure analysis entails proper understanding of various factors as well as the characteristics of ground conditions, which are difficult to achieve due to technological limits. Despite a number of past studies to clarify possible factors triggering slope failures, the impact of rainfall characteristics and infiltration rate, which are the key to estimation of slope stability in wet condition, on slope failures still remains unclear. This study has estimated permeability against various unit weights of soil based on constant head permeability tests using Jumunjin standard silica sand. One dimensional infiltration tests were conducted to estimate the infiltration capacity and the amount of infiltration taking into account the permeability and rainfall intensity. The applicability of existing empirical equations for the estimation of infiltration to granular soils was verified on the basis of the test results.

Relationship between Hydraulic Conductivity and Electrical Resistivity of Standard Sand and Glass Bead (표준사와 유리구슬을 이용한 수리전도도와 전기비저항의 관계)

  • Kim, Soodong;Park, Samgyu;Hamm, Se-Yeong
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • We estimated the hydraulic conductivity of the sediments using constant-head permeability tests and electrical resistivity measurements with Jumoonjin standard sand of a uniform size and glass beads of different grain sizes. In this study, we determined the variations of the porosity, the hydraulic conductivity, and the resistivity in case 1 (changing the packing of the Jumoonjin standard sand) and in case 2 (varying the size of the glass beads). The results of case 1 showed that the hydraulic conductivity decreased with an increase in the electrical resistivity. This occurred because the sand grain while packing became rhombohedral with the a decrease of both the pore size and porosity. The results of the case 2 showed that the hydraulic conductivity increased due to the increase in the pore size as caused by the increased glass bead size. In addition, the porosity decreased and the electrical resistivity increased. Therefore, the relationship between the hydraulic conductivity and the electrical resistivity is negatively proportional as regards the grain packing with a change from cubic to rhombohedral whereas this relationship is positively proportional to the increase in the grain size.

An Experimental Study on the Quality and Crack Healing Characteristics of Repair Mortar Containing Self-Healing Solid Capsules of Crystal Growth Type (결정성장형 자기치유 고상캡슐을 혼합한 보수 모르타르의 품질 및 균열 치유 특성에 관한 실험적 연구)

  • Oh, Sung-Rok;Kim, Cheol-Gyu;Nam, Eun-Joon;Choi, Yun-Wang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, self - healing solid capsules of crystal growth type which can be mixed directly with repair mortar were prepared, and the quality and crack healing performance of repair mortar with self - healing solid capsules were evaluated. The table flow and the air flow rate of the repair mortar material mixed with self-healing solid capsules were found to have no significant influence on table flow and air volume regardless of mixing ratio. Compressive strength tended to decrease with increasing capsule mixing ratio. As a result of evaluation of crack healing properties according to constant water head permeability test, initial water permeability decreased, and reaction products were generated over time and cracks were healed.

Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material (광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성)

  • Kim, Youngsang;Kim, Wonbong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.

An Experimental Study on Engineering Properties of Self-healing Mortar according to PCC(Powder Compacted Capsule) Size and Mixing Ratio (PCC(Powder Compacted Capsule) 크기 및 혼입율에 따른 자기치유 모르타르의 공학적 특성에 관한 실험적 연구)

  • Jae-In, Lee;Chae-Young, Kim;Se-Jin, Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.514-522
    • /
    • 2022
  • In this study, as part of a study to improve the self-healing performance of concrete structures by applying self-healing capsules made of cementitious materials to cement composite materials, the engineering characteristics of mortars according to PCC(Powder Compacted Capsule) size and mixing ratio were compared and analyzed. For this, fluidity, compressive strength, reload test, carbonation, ultrasonic velocity, and water permeability characteristics were measured according to PCC size and mixing ratio of mortar. As a result of the measurement, the fluidity and compressive strength increased as the mixing ratio of PCC increased, and in the case of the load reload test, the healing ratio increased as the mixing ratio of PCC increased in the 03PC formulation. In the case of water permeability test, it was found that when PCC was used, the reduction ratio of water flow was up to 35 % higher than that of Plain, and when PCC with a size of 0.3 to 0.6 mm was mixed with 15 %, it was found to be effective in improving the crack healing ratio of the mortar.

Performance Evaluation of Mortar Containing Mechanochemical Treated Self-Healing Admixtures (기계·화학 처리 자기치유 혼화재가 포함된 모르타르의 성능평가)

  • Park, Dong-Cheol;Kwon, Hyuk;Lee, Jung-Woo;Hwang, Moo-Yeon;Kim, Tae-Hyung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.367-374
    • /
    • 2021
  • In this study, the applicability of mechanochemical process for the manufacture of self-healing admixtures and the effect of mechanochemical process on the self-healing performance were evaluated. The self-healing admixtures were adopted as a highly reactive materials(expansive agent, swelling material and crystal growth agent) for mechanochemical processes. The self-healing admixtures for the mechanochemical process application were evaluated by X-Ray Diffraction and Fourier Transform Infrared Spectroscopy analysis, water permeability performance was used to evaluate self-healing performance of mortar. As a result of the evaluation, the self-healing performance of the WM(With-Mortar)3 sample to which mechanochemical process increased by 4.1% compared to the WM1 sample that was not treated, and the average healing index was 94.3%.

The Effect of Crack Self-Healing Hybrid Capsules Composition Ratio on the Healing Properties of Cement Composites (균열 자기치유 하이브리드캡슐 조성비에 따른 시멘트 복합재료의 치유특성에 미치는 영향)

  • Choi, Yun-Wang;Nam, Eun-Joon;Park, Jun-Ho;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.335-342
    • /
    • 2022
  • In this study, self-healing hybrid capsules were prepared by mixing self-healing solid capsules and self-healing microcapsules using inorganic materials as core materials. Self-healing hybrid capsules were mixed with 3 % according to the composition ratio of 3:7, 5:5, and 7:3 based on the mass of the cement to prepare a self-healing cement composite material. The healing properties of crack self-healing hybrid capsules were evaluated through hydrostatic water permeability test and surface crack monitoring. It was found that the self-healing hybrid capsules prepared by mixing the composition ratio of the self-healing solid capsules and the self-healing microcapsules at 7:3 has a great effect on improving the crack self-healing performance.

Experimental Study on the Quality Properties of Precast Concrete Utilizing Self-Healing Capsules as an Essential Technology for Smart City Implementation (스마트 시티 구현을 위한 요소기술로써 균열 자기치유 캡슐 활용 프리캐스트 콘크리트의 품질특성 평가에 관한 실험적 연구)

  • Sung-Rok Oh;Eun-Joon Nam;Neung-Won Yang;Yun-Wang Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.568-575
    • /
    • 2023
  • This paper aims to evaluate the quality characteristics and healing performance of precast concrete incorporating self-healing technology as a key technique for the construction of smart cities. The study found that precast concrete mixed with hybrid capsules exhibited a tendency of reduced slump and air content, impacting the quality characteristics. Specifically, the slump decreased by up to 14 %, and the air content by up to 9 %. Moreover, the inclusion of hybrid capsules in the concrete resulted in a maximum decrease of 16 % in compressive strength and 18 % in flexural strength. However, the introduction of hybrid capsules significantly enhanced the crack healing performance. The assessment through water permeability tests showed that the healing rate of 0.3 mm crack width after a 28-day healing period improved as the mixing ratio increased, with the healing rates at 1 %, 3 %, and 5 % hybrid capsule mixtures observed to increase by approximately 16 %, 25 %, and 32 %, respectively.