DOI QR코드

DOI QR Code

Relationship between Hydraulic Conductivity and Electrical Resistivity of Standard Sand and Glass Bead

표준사와 유리구슬을 이용한 수리전도도와 전기비저항의 관계

  • Kim, Soodong (Division of Earth Environmental System, Pusan National University) ;
  • Park, Samgyu (Korea Institute of Geoscience and Mineral Resources) ;
  • Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University)
  • 김수동 (부산대학교 지구환경시스템학부) ;
  • 박삼규 (한국지질자원연구원) ;
  • 함세영 (부산대학교 지구환경시스템학부)
  • Received : 2013.02.21
  • Accepted : 2013.06.15
  • Published : 2013.06.28

Abstract

We estimated the hydraulic conductivity of the sediments using constant-head permeability tests and electrical resistivity measurements with Jumoonjin standard sand of a uniform size and glass beads of different grain sizes. In this study, we determined the variations of the porosity, the hydraulic conductivity, and the resistivity in case 1 (changing the packing of the Jumoonjin standard sand) and in case 2 (varying the size of the glass beads). The results of case 1 showed that the hydraulic conductivity decreased with an increase in the electrical resistivity. This occurred because the sand grain while packing became rhombohedral with the a decrease of both the pore size and porosity. The results of the case 2 showed that the hydraulic conductivity increased due to the increase in the pore size as caused by the increased glass bead size. In addition, the porosity decreased and the electrical resistivity increased. Therefore, the relationship between the hydraulic conductivity and the electrical resistivity is negatively proportional as regards the grain packing with a change from cubic to rhombohedral whereas this relationship is positively proportional to the increase in the grain size.

자유면대수층의 수리전도도와 전기비저항 사이의 상관관계를 도출하기 위하여 입자크기가 비교적 균일한 주문진표 준사와 여러 가지 입자크기의 유리구슬을 대상으로 정수위 투수 시험과 전기비저항 측정을 실시하였다. 첫 번째 실험에서는 주문진표준사의 입자배열의 변화에 따라서 그리고 두 번째 실험에서는 유리구슬의 입도 변화에 따라서 공극률, 수리전도도, 전기비저항간의 변화를 파악하였다. 그 결과, 첫 번째 실험에서는 주문진표준사의 다짐정도가 커질수록 공극의 크기와 공극률은 감소하기 때문에, 수리전도도는 작아지고 전기비저항은 커지는 경향을 보였다. 두 번째 실험에서는 유리구슬의 입자크기가 커질수록 공극의 크기는 커지지만 공극률은 작아졌으며, 수리전도도와 전기비저항은 모두 증가하는 경향을 보였다. 따라서 입자배열이 입방체 배열에서 능면체 배열로 변화할 때 수리전도도와 전기비저항은 반비례관계를 나타내는 반면, 입자 크기가 커지면 수리전도도와 전기비저항은 비례관계를 나타내는 것으로 밝혀졌다.

Keywords

References

  1. Allessandrello, E. and Lemoine, Y. (1983) Determination de la permeabilite des alluvions a partir de la prospection electrique. Bulletin of the International Association of Engineering Geology, v.26, n.27 p.357-360.
  2. Archie, G.E. (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. American Institute of Mining, Metallurgical, and Petroleum Engineers. Tech. Rep., 1422.
  3. Choi, S.H., Kim, H.S. and Kim, J.S. (2008) IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer. The Korean Society of Engineering Geology, v.18, n.4, p.423-431.
  4. Choi, S.H. (2009) IP characteristics of sand and clay for investigating the alluvium aquifer. M. Sc. Thesis Chungbuk Nat'l Univ. Korea.
  5. Heigold, P.C., Gilkeson, R.H., Cartwright, K. and Reed, P.C. (1979) Aquifer transmissivity from surficial electrical methods. Ground Water, v.17, p.338-345. https://doi.org/10.1111/j.1745-6584.1979.tb03326.x
  6. Hwang, H.S., Lee, S.K., Ko, D.C., Kim Y.S. and Park I.H. (2000) Detection of sea-water intrusion caused by tidal action using DC resistivity monitoring. Jigu-Mulli-wa-Mulli-Tamsa, v.3, n.1, p.1-6.
  7. Jones, P.H. and Bufford, T.B. (1951) Electric logging applied to ground-water exploration. Geophysics, v.16 n.1 p.115-139. https://doi.org/10.1190/1.1437640
  8. Kelly, W.E. (1977) Geoelectric sounding for estimating aquifer hydraulic conductivity. Ground Water, v.15, n.6, p.420-425. https://doi.org/10.1111/j.1745-6584.1977.tb03189.x
  9. Khalil, M.A. and Santos, F.A.M. (2009) Influence of degree of saturation in the electric resistivity-Hydraulic conductivity relationship. Surveys in Geophysics, v.30, p.601-615. https://doi.org/10.1007/s10712-009-9072-4
  10. Kosinski, W.K. and Kelly, W.E. (1981) Geoelectrical soundings for perdicting aquifer properties. Ground Water, v.19, n.2, p.163-171. https://doi.org/10.1111/j.1745-6584.1981.tb03455.x
  11. Lee, J.H., Hamm, S.Y., Han, S.J., Ok, S.I., Cha, E.J., Cho, H.N., Choo, C.O. and Kim, M.J. (2011) Verifying rehabilitation and evaluation of bedrock wells using airbrush surging and explosive methods. The Korean Society of Engineering Geology, v.21, n.4, p.369-379.
  12. Lee, K.H., Choi, B.S. and Han, W.S. (1995) Relations between electrical and hydraulic properties of aquifer in the Ganam area. Korean Society of Soil and Groundwater Environment, v.2, n.2, p.78-84.
  13. Mazac, O. and Landa, I. (1979) On determination of hydraulic conductivity and transmissivity of granular aquifers by vertical electric sounding. Journal of Geological Sciences, v.16 p.123-139
  14. Niwas, S. and Lima, O.A.L (2003) Aquifer parameter estimation from surface resistivity data. Ground Water, v.41, n.1, p.94-99. https://doi.org/10.1111/j.1745-6584.2003.tb02572.x
  15. Park, S.G. (2004) Pyhsical property factors controlling the electrical resistivity of subsurface. Jigu-Mulli-wa-Mulli-Tamsa, v.7, n.2, p.130-135.
  16. Park, S.G., Kim, J.H. and Seo, G.W. (2005) Application of electrical resistivity monitoring technique to maintenance of embankments. Jigu-Mulli-wa-Mulli-Tamsa, v.8, n.2, p.177-183.
  17. Song, S.H., Chung, H.J. and Kwon, B.D. (2000) An interpretation of hydrogeologic structure using geophysical data from Chungwon area, Chungcheongbuk-Do. The Korean Society of Economic and Environmental Geology, v.33, n.4, p.283-293.
  18. Song, S.H., Kim, K.J., Park, S.G., Yong, H.H. and Cho, I.K. (2003) The result of laboratory test for investigating the relationship between hydraulic properties and electrical resistivity of soil. Annual autumnal Conference of Korean Society of Soil and Groundwater Environment, Jeju-island, Korea.
  19. Todd, D.K. and Mays, L.W. (2005) Groundwater hydrology. John Wiley & Sons, Inc., 636p.
  20. Urish, D.W. (1981) Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers. Water Resources Research, v.17, n.5, p.1401-1408. https://doi.org/10.1029/WR017i005p01401
  21. Worthington, P.F. (1975) Quantitative geophysical investigations of granular aquifers, Geophysical Surveys, v.3, p.313-366.

Cited by

  1. A Relationship between Hydraulic Conductivity and Electrical Properties of Silty Sand on the Riverside of the Nakdong River vol.19, pp.3, 2014, https://doi.org/10.7857/JSGE.2014.19.3.039