• Title/Summary/Keyword: 정보 추천 시스템

Search Result 1,438, Processing Time 0.031 seconds

Personalized University Educational Contents Recommendation Scheme for Job Curation Systems (취업 큐레이션 시스템을 위한 개인 맞춤형 교육 콘텐츠 추천 기법)

  • Lim, Jongtae;Oh, Youngho;Choi, JaeYong;Pyun, DoWoong;Lee, Somin;Shin, Bokyoung;Chae, Daesung;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.134-143
    • /
    • 2021
  • Recently, with the development of mobile devices and social media services, contents recommendation schemes have been studied. They are typically applied to the job curation systems. Most existing university education content recommendation schemes only recommend the most frequently taken subjects based on the student's school and major. Therefore, they do not consider the type or field of employment that each student wants. In this paper, we propose a university educational contents recommendation scheme for job curation services. The proposed scheme extracts companies that a user is interested in by analyzing his/her activities in the job curation system. The proposed scheme selects graduates or mentors based on the reliability and similarity of graduates who have been employed at the companies of interest. The proposed scheme recommends customized subjects, comparative subjects, and autonomous activity lists to users through collaborative filtering.

Music Recommendation System Based on User Emotion and Music Mood (사용자 감성과 음원 무드기반 음악 추천 시스템)

  • Choi, Hyun-Suk;Lee, Jong-Hyung;Kim, Min-Uk;Kim, Ji-Na;Cho, Hyun-Tae;Lee, Han-Duck;Yoon, Kyoung-Ro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.142-145
    • /
    • 2010
  • 본 논문에서는 사용자의 12가지 감성 정보와 음악의 8가지 무드 카테고리를 기반으로 음악을 추천해주는 시스템을 구현하였다. 사용자의 감성과 음악의 무드를 기반으로 음악을 검색하기 위해 전공자 집단 5명과 비전공자 집단 13명, 총 18명으로부터 감성 히스토리 정보와 무드 분류 정보를 얻었다. 감성 히스토리 정보는 참여자가 자신의 감성 정보를 지정하고 어떤 음악을 들었는지를 나타내며, 무드 분류 정보는 각 곡이 어떤 무드를 갖는지를 나타낸다. 위에서 얻어진 정보를 바탕으로 사용자의 감성 정보를 기반으로 3가지 각기 다른 추천 알고리즘을 구현했다. 첫 번째 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도 곡 리스트 중 1위곡의 무드 정보를 이용하여 음악을 추천한다. 두 번째 알고리즘은 첫 번째 알고리즘에서 1위곡부터 20위곡까지의 무드 정보를 이용하여 음악을 추천한다. 마지막 추천 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도 곡 리스트를 등록된 사용자들이 가장 많이 들었던 순서대로 정렬하여 음악을 추천한다.

  • PDF

A Hybrid Music Recommendation System Combining Listening Habits and Tag Information (사용자 청취 습관과 태그 정보를 이용한 하이브리드 음악 추천 시스템)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • In this paper, we propose a hybrid music recommendation system combining users' listening habits and tag information in a social music site. Most of commercial music recommendation systems recommend music items based on the number of plays and explicit ratings of a song. However, the approach has some difficulties in recommending new items with only a few ratings or recommending items to new users with little information. To resolve the problem, we use tag information which is generated by collaborative tagging. According to the meaning of tags, a weighted value is assigned as the score of a tag of an music item. By combining the score of tags and the number of plays, user profiles are created and collaborative filtering algorithm is executed. For performance evaluation, precision, recall, and F-measure are calculated using the listening habit-based recommendation, the tag score-based recommendation, and the hybrid recommendation, respectively. Our experiments show that the hybrid recommendation system outperforms the other two approaches.

A Recommendation Method based on User Interaction and Diversity (다양성을 고려하는 사용자-시스템 상호작용 기반 추천 방법)

  • Kim, Jihoo;Chae, Dong-Kyu;Kim, Sang-Wook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.982-983
    • /
    • 2020
  • 추천 시스템은 사용자들의 과거 구매 이력 등을 학습해서 사용자들이 미래에 구매할 것 같은 상품을 추천한다. 대부분의 추천 시스템 관련 연구들은 사용자들과의 상호작용을 고려하지 않은 채 한 번의 모델 학습과 한 번의 추천만 수행하며, 사용자로부터 추천 결과에 대한 피드백을 받아서 더 나은 추천을 수행하려는 시도는 거의 이루어지지 않았다. 본 논문에서는 기존의 추천 모델들이 사용자와의 상호작용을 추가적으로 고려했을 때 어느 정도의 정확도 향상을 이룰 수 있는지에 대해서 분석한다. 특히 사용자와의 상호작용을 통해 사용자 취향의 다양성을 파악하고 이를 반영하여 더 나은 추천을 제공하는 방법에 대해서 논의한다.

A Hybrid Recommendation Method based on Attributes of Items and Ratings (항목 속성과 평가 정보를 이용한 혼합 추천 방법)

  • Kim Byeong Man;Li Qing
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1672-1683
    • /
    • 2004
  • Recommender system is a kind of web intelligence techniques to make a daily information filtering for people. Researchers have developed collaborative recommenders (social recommenders), content-based recommenders, and some hybrid systems. In this paper, we introduce a new hybrid recommender method - ICHM where clustering techniques have been applied to the item-based collaborative filtering framework. It provides a way to integrate the content information into the collaborative filtering, which contributes to not only reducing the sparsity of data set but also solving the cold start problem. Extensive experiments have been conducted on MovieLense data to analyze the characteristics of our technique. The results show that our approach contributes to the improvement of prediction quality of the item-based collaborative filtering, especially for the cold start problem.

An Intelligent Recommendation System by Integrating the Attributes of Product and Customer in the Movie Reviews (영화 리뷰의 상품 속성과 고객 속성을 통합한 지능형 추천시스템)

  • Hong, Taeho;Hong, Junwoo;Kim, Eunmi;Kim, Minsu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-18
    • /
    • 2022
  • As digital technology converges into the e-commerce market across industries, online transactions have activated, and the use of online has increased. With the recent spread of infectious diseases such as COVID-19, this market flow is accelerating, and various product information can be provided to customers online. Providing a variety of information provides customers with various opportunities but causes difficulties in decision-making. The recommendation system can help customers to make a decision more effectively. However, the previous research on recommendation systems is limited to only quantitative data and does not reflect detailed factors of products and customers. In this study, we propose an intelligent recommendation system that quantifies the attributes of products and customers by applying text mining techniques to qualitative data based on online reviews and integrates the existing objective indicators of total star rating, sentiment, and emotion. The proposed integrated recommendation model showed superior performance to the overall rating-oriented recommendation model. It expects the new business value to be created through the recommendation result reflecting detailed factors of products and customers.

A Deep Learning Based Recommender System Using Visual Information (시각 정보를 활용한 딥러닝 기반 추천 시스템)

  • Moon, Hyunsil;Lim, Jinhyuk;Kim, Doyeon;Cho, Yoonho
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.27-44
    • /
    • 2020
  • In order to solve the user's information overload problem, recommender systems infer users' preferences and suggest items that match them. The collaborative filtering (CF), the most successful recommendation algorithm, has been improving performance until recently and applied to various business domains. Visual information, such as book covers, could influence consumers' purchase decision making. However, CF-based recommender systems have rarely considered for visual information. In this study, we propose VizNCS, a CF-based deep learning model that uses visual information as additional information. VizNCS consists of two phases. In the first phase, we build convolutional neural networks (CNN) to extract visual features from image data. In the second phase, we supply the visual features to the NCF model that is known to easy to extend to other information among the deep learning-based recommendation systems. As the results of the performance comparison experiments, VizNCS showed higher performance than the vanilla NCF. We also conducted an additional experiment to see if the visual information affects differently depending on the product category. The result enables us to identify which categories were affected and which were not. We expect VizNCS to improve the recommender system performance and expand the recommender system's data source to visual information.

A Design of Music Retrieval and Recommendation System based on Emotion (감성 기반 음악 검색 및 추천 시스템 설계)

  • Yoon, Bo-Kook;Hong, Seong-Yong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06d
    • /
    • pp.153-155
    • /
    • 2011
  • 최근 음악 검색 연구에서 일반적으로 사용되는 방법은 키워드 중심의 텍스트 기반 검색방식, 음원의 특징 정보나 허밍 질의 처리 등을 이용하는 내용기반 검색 방식 등이 있다. 그러나 이러한 검색 방식은 단순히 원하는 음악을 질의에 따라 검색해 주며 인간의 감성을 고려하지 못하고 있다. 따라서 본 논문에서는 질의에 의한 검색뿐만 아니라 질의한 음원과 감성정도가 같은 음원을 추천하는 인간 감성 기반 음악 검색 및 추천 시스템을 제안한다. 인간 감성 기반 음악 검색 및 추천 시스템은 크게 2가지 요소로 구성된다. 첫 번째는 사용자가 질의한 질의어를 분석하는 감성기반 검색추론엔진과 두 번째는 음원의 특징 정보 및 감성 정보를 가지고 있는 음원 감성 정보 데이터베이스로 구성된다. 사용자의 감성에 따라 음악을 검색하고 추천한다는 것은 향후 음반 산업에 큰 발전에 기여할 것으로 기대한다.

A Music Recommender Service System using Data Mining and Filtering (데이터 마이닝과 필터링을 이용한 음악추천 서비스 시스템)

  • Lee, Sang-jae;Kim, Won-young;Kim, Ung-mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.731-732
    • /
    • 2009
  • MP3 기기 및 음악재생과 관련된 인터페이스는 이미 우리 생활 곳곳에 전반적으로 자리잡고 있다. 기존의 수동적으로 음악 파일을 검색하여 듣는 방법이 아닌, 사용자의 심리상태, 관심사와 외부변수를 고려하여 사용자가 선호할 만한 음악추천 서비스를 제공하는 방법에 대해 논의한다. 본 논문에서는 데이터 마이닝의 기법인 연관 규칙, 필터링과 추천방법을 통하여 사용자가 원하는 서비스 정보를 효율적으로 도출하는 추천 시스템을 설계한다. 또한 이러한 시스템의 추천목록에 대한 사용자의 만족도를 스스로 평가하는 방법에 대해서도 제안한다.

Analysis of the feasibility of using title-id indexing in a news recommendation system (뉴스 추천 시스템에서의 제목 인덱싱의 활용 가능성 분석)

  • Jun-Pyo Kim;Tae-Ho Kim;Sang-Wook Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.680-682
    • /
    • 2024
  • 현재까지 연구되었던 뉴스 추천 시스템은 일반적으로 뉴스 제목, 뉴스 본문, 카테고리 정보 등의 텍스트 정보를 기반으로 사용자에게 맞춤 뉴스를 추천해주는 방식으로 동작한다. 구체적으로는 뉴스의 텍스트 정보를 통해 뉴스를 표현하는 임베딩 벡터를 생성하여 사용자 맞춤 뉴스를 추천하는 task-specific 한 아키텍처를 기반으로 동작한다. 기존 연구에서는 task-specific 아키텍처 내의 뉴스의 임베딩 벡터를 생성하는 과정에서 BERT 와 같은 언어모델을 이용하여 텍스트 정보를 더 잘 반영하고자 했다. 본 연구에서는 기존의 구조와 다르게, 뉴스 제목 인덱싱을 통해 전체 뉴스 추천 시스템에서의 언어모델을 충분히 활용할 수 있는 방식을 제안하고자 한다.