• Title/Summary/Keyword: 정보 추천 시스템

Search Result 1,438, Processing Time 0.028 seconds

A Design of Recommendation System based on Context-Awareness (컨텍스트 인식 기반 상품 추천 시스템의 설계)

  • 이송희;이근호;김정범;김태윤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.52-54
    • /
    • 2002
  • 추천 시스템은 방문 고객 개개인의 취향이나 구매이력 등을 분석하여 고객이 필요로 하는 상품 또는 컨텐츠 정보의 서비스를 제공한다. 기존의 추천 시스템은 온라인에 초점을 맞추어 설계되었는데 본 논문에서는 무선 인터넷 서비스를 기반으로 무선 단말기(e.g. PDA, Cell Phone 등)를 통해 오프라인에서도 추천정보를 제공하는 시스템을 제안한다. 사용자에게 제공이 되는 추천 정보는 상품이나, 컨텐츠 또는 이벤트 정보이며 제안된 시스템에서는 데이터 마이닝 기법을 통해 데이터를 분류, 측정 및 예측하고 지식 기반방법과 collaborative filtering 방법을 혼합하여 양쪽의 장점만을 취하여 기존의 한정된 상품에 대한 정보와 침상에서만 제공이 되는 서비스를 오프라인까지 통합한 추천 시스템을 제안한다.

  • PDF

유비쿼터스 환경에서의 매장 추천을 위한 추천시스템 개발

  • Kim, Jae-Gyeong;Chae, Gyeong-Hui
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.246-254
    • /
    • 2007
  • 최근 유비쿼터스 환경이 대두됨에 따라 정보의 밀도가 높아지고 있으며, 기업에서는 고객이 제품을 구매함과 동시에 고객의 정보를 저장하여 활용할 수 있게 되었다. 이와 같은 환경은 고객의 요구사항을 사전에 미리 파악하여 적절한 시점과 상황에 맞는 정보를 전달할 수 있도록 하는 추천시스템에 대한 필요성을 증대시켰으며, 다양한 영역에서 추천시스템과 관련된 연구들이 활발하게 이루어지고 있다. 지금까지의 추천시스템은 주로 제품 중심으로 논의되어 왔으나, 유비쿼터스 시장 환경에서는 매장에 대한 논의가 필요하게 되었다. 이는 고객이 다양한 매장을 방문할 수 있으며, 동일한 제품이라도 여러 매장에 동시에 존재할 수 있고, 매장 간의 동선이나 매장의 위치 및 분위기, 제품의 품질이나 가격 등에 대한 개인 선호도에 따라 같은 제품이라도 선호하는 매장은 다를 수 있기 때문이다. 따라서 본 연구에서는 고객의 선호도를 기반으로 유비쿼터스 시장 환경에 적합한 매장 추천시스템을 제안하고자 한다. 매장 추천시스템은 협업 필터링을 기반으로 하고 있으며, Apriori 알고리즘을 이용하여 관련성이 높은 매장들의 집합을 찾아 추천한다. 이 시스템은 기업보다는 고객 중심의 서비스를 제공해 줌으로써 고객의 쇼핑 효율성을 제고시킬 뿐 아니라 장기적인 관점에서 시장 활성화에 기여할 수 있을 것으로 기대한다.

  • PDF

The Implementation of Recommender System for Internet Shopping Mall Using Multiple View Points (인터넷 쇼핑몰에서의 다양한 관점을 가지는 상품 추천 시스템의 구현)

  • Chun, In-Gook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04b
    • /
    • pp.1021-1024
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 정보 데이터베이스와 추천 엔진으로 이루어지며 사용자에게 질문을 던져서 사용자의 조건을 수집한 다음, 이를 상품 정보와 비교하여 가장 최적의 상품을 추천한다. 추천 시스템에서는 특정 상품이 사용자의 조건과 얼마나 일치하는지를 점수로 표시하고 이들 점수를 모든 상품에 대하여 계산한 다음, 가장 높은 점수를 얻은 상품을 추천하게 된다. 이 시스템의 장점은 조건에 정확히 부합하는 상품이 없는 경우에도 가장 조건과 많이 일치하는 상품을 추천할 수 있다는 것이다. 또한 하나의 관점이 아닌 서로 다른 관점을 가지고 있는 여러 전문가가 추천하는 것처럼 본 상품 추천 시스템도 3가지에서 최적의 상품을 추천한다. 하나의 예로 핸드폰을 추천하는 인터넷 사이트를 구축하고 테스트하였다.

  • PDF

Recommender System using Context Information and Spatial Data Mining (상황정보와 공간 데이터 마이닝 기법을 이용한 추천 시스템)

  • Lee Bae-Hee;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.667-669
    • /
    • 2005
  • 유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.

  • PDF

Accelerating and analyzing the Recommendation System using Processing-in-Memory (Processing-in-Memory 를 이용한 추천시스템 가속화 및 분석)

  • Jung-uk Hong;Jin-ho Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.31-34
    • /
    • 2024
  • 추천 시스템(Recommendation System)은 인터넷 쇼핑몰, 넷플릭스, SNS 등 여러 분야에서 유저에게 맞는 타겟 광고를 추천하는 시스템을 말한다. 추천 시스템을 가속하기 위해서는 추천 시스템 모델에서 불규칙적이고 잦은 데이터 이동으로 인해 병목현상을 일으키는 임베딩 레이어를 타겟하는 것이 중요하다고 알려져 있다. 이 논문에서는 데이터 이동이 잦은 어플리케이션에 효과적인 Processing-in-Memory 를 이용하여 추천 시스템을 가속하고 분석한다.

Design Algorithm of Location based Recommendation System by Vector Analysis (위치기반 추천 시스템의 벡터 분석에 의한 알고리즘 설계)

  • Bae Keesung;Suh Songlee;Suk Minsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.753-756
    • /
    • 2004
  • 유비쿼터스 컴퓨팅 환경에서 추천시스템은 무수히 많은 정보들에 대하여 사람들이 적절한 선택을 할 수 있도록 도와준다. 사용자에게 필요한 정보를 찾아주고, 정보들의 우선순위를 결정해주는 추천시스템에 있어서 사용자의 위치는 보다 가치있는 정보를 제공할 수 있는 도구가 된다. 위치기반 추천시스템은 사용자가 아이템들로부터 얼마나 멀리 떨어져있는가를 고려하여 상위 리스트들을 제공할 수 있어야 한다. 하지만 일반적인 추천시스템에서 주로 사용되고 있는 기존의 사용자 기반 협업필터링 기법은 사용자의 자발적인 정보 입력에 의존함으로써 일정한 수의 사용자 정보가 축적되어 있지 않으면 정확한 추천이 불가능한 단점이 있다. 본 논문에서는 아이템에 기반한 협업 필터링 기법을 확률적으로 분석하고, 아이템의 위치에따라 랭킹을 부여하는 방법과 사용자의 위치정보를 추천알고리즘에 적용시켜 보다 정확하고 효율적인 추천방법을 제안하였다.

  • PDF

Accuracy Improvement Test for Contents-based Movie Recommendation System by Increasing Metadata (메타데이터 개수 증가를 이용한 콘텐츠 기반 영화 추천 시스템의 정확도 향상 테스트)

  • Choi, Da-jeong;Seo, Jin-kyeong;Paik, Juryon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.35-38
    • /
    • 2022
  • 콘텐츠 기반 추천 시스템은 대표적인 추천 모델 방법 중 하나이다. 하지만 콘텐츠 기반 추천 시스템은 사용자 관련 메타데이터를 고려하기보다 내용 관련 메타데이터에만 의존하는 경향이 있다. 본 논문에서는 영화의 특징을 담고 있는 메타데이터를 이용해 추천 시스템을 간단히 구현하고, 추천한 영화와 사용자의 영화 평점을 이용해 추천 시스템의 정확도를 측정하였다. 영화 메타데이터 keywords, genres, cast의 개수를 늘려가며 정확도가 변화하는지 알아보았다. 메타데이터 각각의 개수가 증가하면 정확도도 향상할 것이라고 기대했으나 큰 차이가 나타나지 않았다. 모델 평가 결과, 미세한 차이지만 영화 메타데이터를 상위 3개씩 추출해 영화를 추천했을 때의 정확도가 1.2100318041248186으로 가장 높았다.

  • PDF

Web 상에서 개인화된 상품 추천을 위한 Hybrid 추천 시스템에 관한 연구

  • Son, Chang-Hwan;Kim, Gi-Su
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2005.05a
    • /
    • pp.393-408
    • /
    • 2005
  • 인터넷의 성장은 고객에게 많은 혜택을 주었지만, 방대한 양의 정보는 오히려 장시간의 상품 탐색과 제품 선택을 어렵게 만들었다. 이에 따라, 정보의 양을 줄여 줄 수 있는 서비스를 고객들은 요구를 하기 시작하였고, 이에 따라 다양한 방법들이 고객에게 제시 되어졌다. 제시되어진 방법 중의 하나가 개인화 추천 시스템이다. 추천 시스템은 고객의 취향과 관심에 적합한 상품을 추천 해 주는 서비스로서 상품 검색 노력을 줄여 주고, 고객의 취향에 적합한 제품을 제시 해 줌으로써 고객충성도 제고에도 많은 도움을 주고 있다. 이러한 추천 시스템에서 가장 많이 사용되어지고 있는 기법은 협업 필터링이다. 협업 필터링은 협업에서도유용한 기법으로 인정을 받았다. 하지만 희박성과 확장성이라는 문제점으로 인해 추천의 정확도가 다소 떨어진다는 것이 단점이다. 본 연구에서는 이러한 단점을 극복할 수 있는 방법으로써 Hybrid 협업 필터링 기법을제시하고, 이를 토대로 추천 기법이 혼합되어진 Hybrid 추천 시스템에 대한 개념을 제시하고자 한다.

  • PDF

Design of Personalized Recommendation System about Tourist Information Using Ontology (온톨로지를 이용한 관광정보 개인화 추천 시스템 설계)

  • Hwang Myunggwun;Kong Hyunjang;Jung Kwanho;Kim Pankoo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.685-687
    • /
    • 2005
  • 본 연구에서는 관광정보를 온톨로지로 구축하고, 개인화 추천 방법들 중 규칙 기반 필터링과 학습 에이전트를 적용하여 사용자에게 관광 정보를 정확하게 추천하기 위한 시스템을 설계하였다. 여기에서는 제주도 관광에 관한 정보의 일부를 개인화 추천 시스템에 적합하도록 각각의 도메인 온톨로지로 구축하였으며, 이 도메인 온톨로지를 이용하여 사용자가 선호하는 관광정보를 추천하고, 온톨로지의 클래스들 사이의 관계를 통해 추천된 관광정보와 관련있는 필요한 정보를 추천함으로써 사용자에게 더욱 정확하고 의미적인 정보를 제공할 수 있는 개인화 추천 시스템을 설계하였다.

  • PDF

데이터마이닝과 다중모형조합기법을 이용한 온라인상점 상품추천시스템 개발

  • 이연경;김경재
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.340-348
    • /
    • 2004
  • 온라인상점의 상품추천시스템은 일대일마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 대부분의 상품추천시스템은 시시각각 변화하는 소비자의 기호에 따라 상품을 어떻게 추천할 것인가에 대한 문제에 직면해 있다. 본 연구에서는 급변하는 온라인상점 환경에 탄력적으로 대응하기 위하여 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 제안하는 상품추천시스템은 현재 운영중인 온라인상점 데이터로 프로토타입을 구축하고 실제 소비자에 대한 적용가능성을 검증하였으며, 그 결과 실제 유용할 것으로 확인되었다.

  • PDF