• Title/Summary/Keyword: 정보 자산

Search Result 1,230, Processing Time 0.033 seconds

Estimation of Structural Deterioration of Sewer using Markov Chain Model (마르코프 연쇄 모델을 이용한 하수관로의 구조적 노후도 추정)

  • Kang, Byong Jun;Yoo, Soon Yu;Zhang, Chuanli;Park, Kyoo Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.421-431
    • /
    • 2023
  • Sewer deterioration models can offer important information on prediction of future condition of the asset to decision makers in their implementing sewer pipe networks management program. In this study, Markov chain model was used to estimate sewer deterioration trend based on the historical structural condition assessment data obtained by CCTV inspection. The data used in this study were limited to Hume pipe with diameter of 450 mm and 600 mm in three sub-catchment areas in city A, which were collected by CCTV inspection projects performed in 1998-1999 and 2010-2011. As a result, it was found that sewers in sub-catchment area EM have deteriorated faster than those in other two sub-catchments. Various main defects were to generate in 29% of 450 mm sewers and 38% of 600 mm in 35 years after the installation, while serious failure in 62% of 450 mm sewers and 74% of 600 mm in 100 years after the installation in sub-catchment area EM. In sub-catchment area SN, main defects were to generate in 26% of 450 mm sewers and 35% of 600 mm in 35 years after the installation, while in sub-catchment area HK main defects were to generate in 27% of 450 mm sewers and 37% of 600 mm in 35 years after the installation. Larger sewer pipes of 600 mm were found to deteriorate faster than smaller sewer pipes of 450 mm by about 12 years. Assuming that the percentage of main defects generation could be set as 40% to estimate the life expectancy of the sewers, it was estimated as 60 years in sub-catchment area SN, 42 years in sub-catchment area EM, 59 years in sub-catchment area HK for 450 mm sewer pipes, respectively. For 600 mm sewer pipes, on the other hand, it was estimated as 43 years, 34 years, 39 years in sub-catchment areas SN, EM, and HK, respectively.

A Study on the Characteristics of Patent Innovation in the Service Industry (서비스 산업의 특허권 혁신 특성에 대한 연구)

  • Pyoung Yol Jang
    • Journal of Service Research and Studies
    • /
    • v.14 no.2
    • /
    • pp.82-100
    • /
    • 2024
  • Due to the intensifying global technological competition, the strategic and economic importance of intellectual property such as patents as intangible assets is increasing. The purpose of this study is to understand the current status of patent innovation in the service industry and to derive the characteristics and implications of patent innovation in the service industry. To this end, this study conducted an investigation and analysis to understand the characteristics of patent innovation in the service industry based on the data from the business activity survey. The proportion of patent companies in the service industry, characteristics of each service industry, proportion of each service industry, and the number of patent rights holdings were analyzed. In addition, the trend of patent changes in the service industry was investigated. The service industry was compared and analyzed with other industries based on the results of the analysis of patent innovation in the service industry. In particular, the service industry was divided into four types in terms of the rate of increase in the proportion of patent companies and the ratio of patent holing companies, and the types were derived. Based on the analysis results, the characteristics of patent innovation in the service industry were presented. As a result of the study, the proportion of patent holding companies in the service industry was lower than that of other industries, and the gap with other industries was widening, showing that the patent innovation of service companies is lower than that of other industries. The average number of patents held by service industry companies was lower than that of other industries, and the increase rate of the number of patent rights held was also lower than that of other industries, widening the gap. Patent innovation in the service industry can be divided into four quadrants in terms of the rate of increase in the proportion of patent holding companies and the proportion of patent holding companies, and it has been studied that the service industry needs policy support suitable for the characteristics of patent innovation in the quadrant to which the individual service industry belongs.

A Study on the Change of Cyber Attacks in North Korea (북한의 사이버 공격 변화 양상에 대한 연구)

  • Chanyoung Park;Hyeonsik Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.175-181
    • /
    • 2024
  • The U.N. Security Council's North Korea Sanctions Committee estimated that the amount of North Korea's cyberattacks on virtual asset-related companies from 2017 to 2023 was about 4 trillion won. North Korea's cyberattacks have secured funds through cryptocurrency hacking as it has been restricted from securing foreign currency due to economic sanctions by the international community, and it also shows the form of technology theft against defense companies, and illegal assets are being used to maintain the Kim Jong-un regime and develop nuclear and missile development. When North Korea conducted its sixth nuclear test on September 3, 2017, and declared the completion of its national nuclear armament following the launch of an intercontinental ballistic missile on November 29 of the same year, the U.N. imposed sanctions on North Korea, which are considered the strongest economic sanctions in history. In these difficult economic situations, North Korea tried to overcome the crisis through cyberattacks, but as a result of analyzing the changes through the North's cyber attack cases, the strategic goal from the first period from 2009 to 2016 was to verify and show off North Korea's cyber capabilities through the neutralization of the national network and the takeover of information, and was seen as an intention to create social chaos in South Korea. When foreign currency earnings were limited due to sanctions against North Korea in 2016, the second stage seized virtual currency and secured funds to maintain the Kim Jong-un regime and advance nuclear and missile development. The third stage is a technology hacking of domestic and foreign defense companies, focusing on taking over key technologies to achieve the five strategic weapons tasks proposed by Chairman Kim Jong-un at the 8th Party Congress in 2021. At the national level, security measures for private companies as well as state agencies should be established against North Korea's cyberattacks, and measures for legal systems, technical problems, and budgets related to science are urgently needed. It is also necessary to establish a system and manpower to respond to the ever-developing cyberattacks by focusing on cultivating and securing professional manpower such as white hackers.

Empirical Analysis on Bitcoin Price Change by Consumer, Industry and Macro-Economy Variables (비트코인 가격 변화에 관한 실증분석: 소비자, 산업, 그리고 거시변수를 중심으로)

  • Lee, Junsik;Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.195-220
    • /
    • 2018
  • In this study, we conducted an empirical analysis of the factors that affect the change of Bitcoin Closing Price. Previous studies have focused on the security of the block chain system, the economic ripple effects caused by the cryptocurrency, legal implications and the acceptance to consumer about cryptocurrency. In various area, cryptocurrency was studied and many researcher and people including government, regardless of country, try to utilize cryptocurrency and applicate to its technology. Despite of rapid and dramatic change of cryptocurrencies' price and growth of its effects, empirical study of the factors affecting the price change of cryptocurrency was lack. There were only a few limited studies, business reports and short working paper. Therefore, it is necessary to determine what factors effect on the change of closing Bitcoin price. For analysis, hypotheses were constructed from three dimensions of consumer, industry, and macroeconomics for analysis, and time series data were collected for variables of each dimension. Consumer variables consist of search traffic of Bitcoin, search traffic of bitcoin ban, search traffic of ransomware and search traffic of war. Industry variables were composed GPU vendors' stock price and memory vendors' stock price. Macro-economy variables were contemplated such as U.S. dollar index futures, FOMC policy interest rates, WTI crude oil price. Using above variables, we did times series regression analysis to find relationship between those variables and change of Bitcoin Closing Price. Before the regression analysis to confirm the relationship between change of Bitcoin Closing Price and the other variables, we performed the Unit-root test to verifying the stationary of time series data to avoid spurious regression. Then, using a stationary data, we did the regression analysis. As a result of the analysis, we found that the change of Bitcoin Closing Price has negative effects with search traffic of 'Bitcoin Ban' and US dollar index futures, while change of GPU vendors' stock price and change of WTI crude oil price showed positive effects. In case of 'Bitcoin Ban', it is directly determining the maintenance or abolition of Bitcoin trade, that's why consumer reacted sensitively and effected on change of Bitcoin Closing Price. GPU is raw material of Bitcoin mining. Generally, increasing of companies' stock price means the growth of the sales of those companies' products and services. GPU's demands increases are indirectly reflected to the GPU vendors' stock price. Making an interpretation, a rise in prices of GPU has put a crimp on the mining of Bitcoin. Consequently, GPU vendors' stock price effects on change of Bitcoin Closing Price. And we confirmed U.S. dollar index futures moved in the opposite direction with change of Bitcoin Closing Price. It moved like Gold. Gold was considered as a safe asset to consumers and it means consumer think that Bitcoin is a safe asset. On the other hand, WTI oil price went Bitcoin Closing Price's way. It implies that Bitcoin are regarded to investment asset like raw materials market's product. The variables that were not significant in the analysis were search traffic of bitcoin, search traffic of ransomware, search traffic of war, memory vendor's stock price, FOMC policy interest rates. In search traffic of bitcoin, we judged that interest in Bitcoin did not lead to purchase of Bitcoin. It means search traffic of Bitcoin didn't reflect all of Bitcoin's demand. So, it implies there are some factors that regulate and mediate the Bitcoin purchase. In search traffic of ransomware, it is hard to say concern of ransomware determined the whole Bitcoin demand. Because only a few people damaged by ransomware and the percentage of hackers requiring Bitcoins was low. Also, its information security problem is events not continuous issues. Search traffic of war was not significant. Like stock market, generally it has negative in relation to war, but exceptional case like Gulf war, it moves stakeholders' profits and environment. We think that this is the same case. In memory vendor stock price, this is because memory vendors' flagship products were not VRAM which is essential for Bitcoin supply. In FOMC policy interest rates, when the interest rate is low, the surplus capital is invested in securities such as stocks. But Bitcoin' price fluctuation was large so it is not recognized as an attractive commodity to the consumers. In addition, unlike the stock market, Bitcoin doesn't have any safety policy such as Circuit breakers and Sidecar. Through this study, we verified what factors effect on change of Bitcoin Closing Price, and interpreted why such change happened. In addition, establishing the characteristics of Bitcoin as a safe asset and investment asset, we provide a guide how consumer, financial institution and government organization approach to the cryptocurrency. Moreover, corroborating the factors affecting change of Bitcoin Closing Price, researcher will get some clue and qualification which factors have to be considered in hereafter cryptocurrency study.

Corporate Governance and Managerial Performance in Public Enterprises: Focusing on CEOs and Internal Auditors (공기업의 지배구조와 경영성과: CEO와 내부감사인을 중심으로)

  • Yu, Seung-Won
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.71-103
    • /
    • 2009
  • Considering the expenditure size of public institutions centering on public enterprises, about 28% of Korea's GDP in 2007, public institutions have significant influence on the Korean economy. However, still in the new government, there are voices of criticism about the need of constant reform on public enterprises due to their irresponsible management impeding national competitiveness. Especially, political controversy over appointment of executives such as CEOs of public enterprises has caused the distrust of the people. As one of various reform measures for public enterprises, this study analyzes the effect of internal governance structure of public enterprises on their managerial performance, since, regardless of privatization of public enterprises, improving the governance structure of public enterprises is a matter of great importance. There are only a few prior researches focusing on the governance structure and managerial performance of public enterprises compared to those of private enterprises. Most of prior researches studied the relationship between parachuting employment of CEO and managerial performance, and concluded that parachuting produces negative effect on managerial performance. However, different from the results of such researches, recent studies suggest that there is no relationship between employment type of CEOs and managerial performance in public enterprises. This study is distinguished from prior researches in view of following. First, prior researches focused on the relationship between employment type of public enterprises' CEOs and managerial performance. However, in addition to this, this study analyzes the relationship of internal auditors and managerial performance. Second, unlike prior researches studying the relationship between employment type of public corporations' CEOs and managerial performance with an emphasis on parachuting employment, this study researches impact of employment type as well as expertise of CEOs and internal auditors on managerial performance. Third, prior researchers mainly used non-financial indicators from various samples. However, this study eliminated subjectivity of researchers by analyzing public enterprises designated by the government and their financial statements, which were externally audited and inspected. In this study, regression analysis is applied in analyzing the relationship of independence and expertise of public enterprises' CEOs and internal auditors and managerial performance in the same year. Financial information from 2003 to 2007 of 24 public enterprises, which are designated by the government, and their personnel information from the board of directors are used as samples. Independence of CEOs is identified by dividing CEOs into persons from the same public enterprise and persons from other organization, and independence of internal auditors is determined by classifying them into two groups, people from academic field, economic world, and civic groups, and people from political community, government ministries, and military. Also, expertise of CEOs and internal auditors is divided into business expertise and financial expertise. As control variables, this study applied foundation year, asset size, government subsidies as a proportion to corporate earnings, and dummy variables by year. Analysis showed that there is significantly positive relationship between independence and financial expertise of internal auditors and managerial performance. In addition, although business expertise and financial expertise of CEOs were not statistically significant, they have positive relationship with managerial performance. However, unlike a general idea, independence of CEOs is not statistically significant, but it is negatively related to managerial performance. Contrary to general concerns, it seems that the impact of independence of public enterprises' CEOs on managerial performance has slightly decreased. Instead, it explains that expertise of public enterprises' CEOs and internal auditors plays more important role in managerial performance rather than their independence. Meanwhile, there are limitations in this study as follows. First, in contrast to private enterprises, public enterprises simultaneously pursue publicness and entrepreneurship. However, this study focuses on entrepreneurship, excluding considerations on publicness of public enterprises. Second, public enterprises in this study are limited to those in the central government. Accordingly, it should be carefully considered when the result of this study is applied to public enterprises in local governments. Finally, this study excludes factors related to transparency and democracy issues which are raised in appointment process of executives of public enterprises, as it may cause the issue of subjectivity of researchers.

  • PDF

Derivation of Digital Music's Ranking Change Through Time Series Clustering (시계열 군집분석을 통한 디지털 음원의 순위 변화 패턴 분류)

  • Yoo, In-Jin;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-191
    • /
    • 2020
  • This study focused on digital music, which is the most valuable cultural asset in the modern society and occupies a particularly important position in the flow of the Korean Wave. Digital music was collected based on the "Gaon Chart," a well-established music chart in Korea. Through this, the changes in the ranking of the music that entered the chart for 73 weeks were collected. Afterwards, patterns with similar characteristics were derived through time series cluster analysis. Then, a descriptive analysis was performed on the notable features of each pattern. The research process suggested by this study is as follows. First, in the data collection process, time series data was collected to check the ranking change of digital music. Subsequently, in the data processing stage, the collected data was matched with the rankings over time, and the music title and artist name were processed. Each analysis is then sequentially performed in two stages consisting of exploratory analysis and explanatory analysis. First, the data collection period was limited to the period before 'the music bulk buying phenomenon', a reliability issue related to music ranking in Korea. Specifically, it is 73 weeks starting from December 31, 2017 to January 06, 2018 as the first week, and from May 19, 2019 to May 25, 2019. And the analysis targets were limited to digital music released in Korea. In particular, digital music was collected based on the "Gaon Chart", a well-known music chart in Korea. Unlike private music charts that are being serviced in Korea, Gaon Charts are charts approved by government agencies and have basic reliability. Therefore, it can be considered that it has more public confidence than the ranking information provided by other services. The contents of the collected data are as follows. Data on the period and ranking, the name of the music, the name of the artist, the name of the album, the Gaon index, the production company, and the distribution company were collected for the music that entered the top 100 on the music chart within the collection period. Through data collection, 7,300 music, which were included in the top 100 on the music chart, were identified for a total of 73 weeks. On the other hand, in the case of digital music, since the cases included in the music chart for more than two weeks are frequent, the duplication of music is removed through the pre-processing process. For duplicate music, the number and location of the duplicated music were checked through the duplicate check function, and then deleted to form data for analysis. Through this, a list of 742 unique music for analysis among the 7,300-music data in advance was secured. A total of 742 songs were secured through previous data collection and pre-processing. In addition, a total of 16 patterns were derived through time series cluster analysis on the ranking change. Based on the patterns derived after that, two representative patterns were identified: 'Steady Seller' and 'One-Hit Wonder'. Furthermore, the two patterns were subdivided into five patterns in consideration of the survival period of the music and the music ranking. The important characteristics of each pattern are as follows. First, the artist's superstar effect and bandwagon effect were strong in the one-hit wonder-type pattern. Therefore, when consumers choose a digital music, they are strongly influenced by the superstar effect and the bandwagon effect. Second, through the Steady Seller pattern, we confirmed the music that have been chosen by consumers for a very long time. In addition, we checked the patterns of the most selected music through consumer needs. Contrary to popular belief, the steady seller: mid-term pattern, not the one-hit wonder pattern, received the most choices from consumers. Particularly noteworthy is that the 'Climbing the Chart' phenomenon, which is contrary to the existing pattern, was confirmed through the steady-seller pattern. This study focuses on the change in the ranking of music over time, a field that has been relatively alienated centering on digital music. In addition, a new approach to music research was attempted by subdividing the pattern of ranking change rather than predicting the success and ranking of music.

Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression (Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석)

  • Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2017
  • Volatility in the stock market returns is a measure of investment risk. It plays a central role in portfolio optimization, asset pricing and risk management as well as most theoretical financial models. Engle(1982) presented a pioneering paper on the stock market volatility that explains the time-variant characteristics embedded in the stock market return volatility. His model, Autoregressive Conditional Heteroscedasticity (ARCH), was generalized by Bollerslev(1986) as GARCH models. Empirical studies have shown that GARCH models describes well the fat-tailed return distributions and volatility clustering phenomenon appearing in stock prices. The parameters of the GARCH models are generally estimated by the maximum likelihood estimation (MLE) based on the standard normal density. But, since 1987 Black Monday, the stock market prices have become very complex and shown a lot of noisy terms. Recent studies start to apply artificial intelligent approach in estimating the GARCH parameters as a substitute for the MLE. The paper presents SVR-based GARCH process and compares with MLE-based GARCH process to estimate the parameters of GARCH models which are known to well forecast stock market volatility. Kernel functions used in SVR estimation process are linear, polynomial and radial. We analyzed the suggested models with KOSPI 200 Index. This index is constituted by 200 blue chip stocks listed in the Korea Exchange. We sampled KOSPI 200 daily closing values from 2010 to 2015. Sample observations are 1487 days. We used 1187 days to train the suggested GARCH models and the remaining 300 days were used as testing data. First, symmetric and asymmetric GARCH models are estimated by MLE. We forecasted KOSPI 200 Index return volatility and the statistical metric MSE shows better results for the asymmetric GARCH models such as E-GARCH or GJR-GARCH. This is consistent with the documented non-normal return distribution characteristics with fat-tail and leptokurtosis. Compared with MLE estimation process, SVR-based GARCH models outperform the MLE methodology in KOSPI 200 Index return volatility forecasting. Polynomial kernel function shows exceptionally lower forecasting accuracy. We suggested Intelligent Volatility Trading System (IVTS) that utilizes the forecasted volatility results. IVTS entry rules are as follows. If forecasted tomorrow volatility will increase then buy volatility today. If forecasted tomorrow volatility will decrease then sell volatility today. If forecasted volatility direction does not change we hold the existing buy or sell positions. IVTS is assumed to buy and sell historical volatility values. This is somewhat unreal because we cannot trade historical volatility values themselves. But our simulation results are meaningful since the Korea Exchange introduced volatility futures contract that traders can trade since November 2014. The trading systems with SVR-based GARCH models show higher returns than MLE-based GARCH in the testing period. And trading profitable percentages of MLE-based GARCH IVTS models range from 47.5% to 50.0%, trading profitable percentages of SVR-based GARCH IVTS models range from 51.8% to 59.7%. MLE-based symmetric S-GARCH shows +150.2% return and SVR-based symmetric S-GARCH shows +526.4% return. MLE-based asymmetric E-GARCH shows -72% return and SVR-based asymmetric E-GARCH shows +245.6% return. MLE-based asymmetric GJR-GARCH shows -98.7% return and SVR-based asymmetric GJR-GARCH shows +126.3% return. Linear kernel function shows higher trading returns than radial kernel function. Best performance of SVR-based IVTS is +526.4% and that of MLE-based IVTS is +150.2%. SVR-based GARCH IVTS shows higher trading frequency. This study has some limitations. Our models are solely based on SVR. Other artificial intelligence models are needed to search for better performance. We do not consider costs incurred in the trading process including brokerage commissions and slippage costs. IVTS trading performance is unreal since we use historical volatility values as trading objects. The exact forecasting of stock market volatility is essential in the real trading as well as asset pricing models. Further studies on other machine learning-based GARCH models can give better information for the stock market investors.

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

A Study on Industries's Leading at the Stock Market in Korea - Gradual Diffusion of Information and Cross-Asset Return Predictability- (산업의 주식시장 선행성에 관한 실증분석 - 자산간 수익률 예측 가능성 -)

  • Kim Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.355-380
    • /
    • 2004
  • I test the hypothesis that the gradual diffusion of information across asset markets leads to cross-asset return predictability in Korea. Using thirty-six industry portfolios and the broad market index as our test assets, I establish several key results. First, a number of industries such as semiconductor, electronics, metal, and petroleum lead the stock market by up to one month. In contrast, the market, which is widely followed, only leads a few industries. Importantly, an industry's ability to lead the market is correlated with its propensity to forecast various indicators of economic activity such as industrial production growth. Consistent with our hypothesis, these findings indicate that the market reacts with a delay to information in industry returns about its fundamentals because information diffuses only gradually across asset markets. Traditional theories of asset pricing assume that investors have unlimited information-processing capacity. However, this assumption does not hold for many traders, even the most sophisticated ones. Many economists recognize that investors are better characterized as being only boundedly rational(see Shiller(2000), Sims(2201)). Even from casual observation, few traders can pay attention to all sources of information much less understand their impact on the prices of assets that they trade. Indeed, a large literature in psychology documents the extent to which even attention is a precious cognitive resource(see, eg., Kahneman(1973), Nisbett and Ross(1980), Fiske and Taylor(1991)). A number of papers have explored the implications of limited information- processing capacity for asset prices. I will review this literature in Section II. For instance, Merton(1987) develops a static model of multiple stocks in which investors only have information about a limited number of stocks and only trade those that they have information about. Related models of limited market participation include brennan(1975) and Allen and Gale(1994). As a result, stocks that are less recognized by investors have a smaller investor base(neglected stocks) and trade at a greater discount because of limited risk sharing. More recently, Hong and Stein(1999) develop a dynamic model of a single asset in which information gradually diffuses across the investment public and investors are unable to perform the rational expectations trick of extracting information from prices. Hong and Stein(1999). My hypothesis is that the gradual diffusion of information across asset markets leads to cross-asset return predictability. This hypothesis relies on two key assumptions. The first is that valuable information that originates in one asset reaches investors in other markets only with a lag, i.e. news travels slowly across markets. The second assumption is that because of limited information-processing capacity, many (though not necessarily all) investors may not pay attention or be able to extract the information from the asset prices of markets that they do not participate in. These two assumptions taken together leads to cross-asset return predictability. My hypothesis would appear to be a very plausible one for a few reasons. To begin with, as pointed out by Merton(1987) and the subsequent literature on segmented markets and limited market participation, few investors trade all assets. Put another way, limited participation is a pervasive feature of financial markets. Indeed, even among equity money managers, there is specialization along industries such as sector or market timing funds. Some reasons for this limited market participation include tax, regulatory or liquidity constraints. More plausibly, investors have to specialize because they have their hands full trying to understand the markets that they do participate in

  • PDF

A Study on the Present Situation, Management Analysis, and Future Prospect of the Ornamental Tree Cultivation with respect to Environmental Improvement (환경개선(環境改善)을 위한 녹화수목재배(綠化樹木裁培)의 현황(現況) 및 경영분석(經營分析)과 전망(展望))

  • Park, Tai Sik;Kim, Tae Wook
    • Journal of Korean Society of Forest Science
    • /
    • v.34 no.1
    • /
    • pp.31-46
    • /
    • 1977
  • The study was made to give some helpful information for policy-making on ornamental tree cultivation by doing a survey on general situations, management analysis, and future prospects of the ornamental tree growing. The study was carried out through literature studies related to the subject, questionaire surveys, and on-the-spot investigation. The questionaire surveys could be divided into two parts: pre-questionaire survey and main-questionaire survey. In the pre-questionaire survey, the researchers intended to identify the total number of ornamental tree growers, cultivation areas in size and their locations. The questionaires were sent to each town and county administration authorities, forest cooperatives, and related organizations through-out the nation. The main-questionaires were prepared for detailed study and the questionaires were sent to 200 tree growers selected by option by taking considerations of the number of tree growers and the size of cultivating areas in regions. The main findings and some information obtained in the survey were as follows: 1. The total land for ornamental tree growing was amounted to 1,873.02 hectares and the number of cultivators was totaled to 2,717. 2. The main occupations of the ornamental tree growers were found in horticulture (41.9%), agronomy (25.9%), officialdom (11.3%), animal husbandry (6.5%), business circle(4.8%), and forestry (3.2%) in sequence. 3. The ornamental trees were cultivated mostly upperland (54.8), forest land (19.4%), rice paddy (11.3%) and others. 4. The educational training of the tree growers seemed quite high. The results of the survey indicated that a large number of tree growers was occupied by college graduates (38.7%), and then high school graduates (34.7%), middle school graduates (12.9%) in order. 5. The tree farming was undertaken as a side-job (41.9%) rather than main-job (23.4%), but a few of respondents rated as subsidiary-job (18.6%). 6. The management status classified by the rate of hired labors used was likely to belong to three categories: independant enterprise management (41.9%); half independant management (31.5%); and self-management (32.4%). 7. The majority of the tree growers sold their products to the consumers through middle-man channel (48.4%), or directly to the house-holder and detailers (13.7%), but a few of the respondents answered that they disposed of their products by bidding (11.2%) or by direct selling to the contractors (4.8%). 8. The channel cf marketing seemed somewhat complicated. The results of the survey were as: (1) producers ${\rightarrow}$consumers (22.6%) (2) producers ${\rightarrow}$field middle-men${\rightarrow}$consumers (33.1%) (3) producers ${\rightarrow}$field middle-men${\rightarrow}$first stage brokers${\rightarrow}$consumers (15.3%) (4) producers ${\rightarrow}$field middle-men${\rightarrow}$second stage middle-men${\rightarrow}$brokers${\rightarrow}$consumers (5.7%) (5) producers${\rightarrow}$field middle-men${\rightarrow}$third stage middle-men${\rightarrow}$second stage middlemen${\rightarrow}$brokers${\rightarrow}$consumers (4.8%) 9. It was responded that the margin for each stage of middle-men or brokers was assumed to be 30-50%(33.1%), 20-30%(32.3%), 50-100%(9.7%), and 100-200%(2.4%) in sequence. 10. The difference between the delivery price of consumers and field selling price of the producers seemed quite large. Majority of producers responded that they received half a price compared to the consumer's prices. 11. About two thirds of the respondents opposed to the measure of "Law on Preservation and Utilization of Agricultural Land" in which says that all the ornamental trees grown on flat agricultural lands less than 8 degrees in slope must be transplanted within three years to other places more than 8 degrees in slope. 12. The tree growers said that they have paid rather high land taxes than they ought to pay (38.7%), but come responded that land tax seemed to be appropriate (15.3%), and half of the respondents answered "not known". 13. The measures for the standardization of ornamental trees by size were backed up by a large number of respondents (57.3%), but one third of the respondents showed negative answer (29.8%). 14. About half of the respondents favored the systematic marketing through organization such as forest cooperatives (54%), but quite a few respondents opposed to organizing the systematic marketing channel (36.3%). 15. The necessary measures for permission in ornamental tree cultivation was rejected by a large number of respondents (49.2%) than those of favored (43.6%).

  • PDF