• Title/Summary/Keyword: 정보 불균형

Search Result 593, Processing Time 0.024 seconds

Development of Index of Park Derivation to Promote Inclusive Living SOC Policy (포용적 생활 SOC 정책 추진을 위한 공원결핍지수 개발 연구)

  • Kim, Yong-Gook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.5
    • /
    • pp.28-40
    • /
    • 2019
  • In order to resolve the imbalances in the supply of living SOCs according to socio-economic status, location, and population groups, the discussions on inclusive city policies are expanding. The purpose of this study is to propose an Index of Park Derivation (IPD) as an alternative indicator for the promotion of an inclusive urban park policy that can be applied in the 7 major metropolitan cities to select a region with a relatively high park needs. The main research results are as follows. First, the concept of an inclusive urban park policy is defined as "a policy to supply to manage high-quality park services with priority given to areas with low socio-economic and environmental status, such as a large amount of elderly, children, low-income families, areas vulnerable to disasters, such as heat and fine dust, and population groups." Second, we developed the index of park derivation (IPD), which is a combination of 17 variables including park service level, demographic characteristics, economic and educational level, health level, and environmental vulnerability. The variables that constitute the index of park deprivation (IPD) can be applied to SOC policies outside the parks, such as sports facilities, daycare centers, kindergartens, and public libraries. Third, applying index of park deprivation (IPD) to 1,148 Eup/Myeon/dong areas of the 7 metropolitan cities resulted in areas with relatively high park service needs. This study implies that the central and the local government suggest an alternative index to promote an inclusive urban park policy based on statistical and geographical information and data that can be easily accessed and utilized.

Analysis of the Regional Disparity and Optimal Location of Living SOC - Focused on Core Living Facilities (생활SOC의 지역 간 격차와 최적입지 분석 - 생활거점시설을 중심으로)

  • Lee, Se Young;Kim, Hyun Joong;Yeo, Kwan Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.159-168
    • /
    • 2022
  • Local governments should try to resolve the inequality of living SOC (Social Overhead Capital) and construct spatial information on the location of living SOCs and optimal locations. This study analyzed the accessibility, equity, and optimal location of the living SOC, considering the research needs related to the living SOC. The target facility is core living facilities(a public library, a park, a culture center, and a public daycare center). The analysis area is Suwon city in Gyeonggi province, and the base year of the analysis is 2020. The study calculated accessibility per population in a microscopic neighborhood living area(200m×200m). The Gini coefficient was used to identify the regional disparity in accessibility among Dong regions. The optimal location was explored with the Maximal Covering Location Problem theory. As a result, spatial accessibility of facilities except for public daycare centers revealed a large gap between regions. Areas with excellent accessibility also showed significant variations in the facilities. The regional disparity in living SOC was the largest in culture centers, followed by parks, public daycare centers, and public libraries. The optimal locations for public libraries, parks, and culture centers are concentrated in the old downtown, while those of public daycare centers are found throughout Suwon city. The results of this study are the crucial contents of spatial planning for SOC supply in local governments. Therefore, follow-up studies will be able to refer to the analysis structure and results of the study.

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

Exercise Posture Calibration System using Pressure and Acceleration Sensors (압력 및 가속도 센서를 활용한 운동 자세 교정 시스템 )

  • Won-Ki Cho;Ye-Ram Park;Sang-Hyeon Park;Young-Min Song;Boong-Joo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.781-790
    • /
    • 2024
  • As modern people's interest in exercise and health increases, the demand for exercise-related information and devices is increasing, and exercising in the wrong posture can lead to body imbalance and injury. Therefore, in this study, the purpose of this study is to correct the posture for health promotion and injury prevention through the correct exercise posture of users. It was developed using Arduino Uno R3, a pressure sensor, and an acceleration sensor as the main memory device of the system. The pressure sensor was used to determine the squat posture, and the acceleration sensor was used to determine three types of gait: normal step, nasolabial step, and saddle step. Data is transmitted to a smartphone through a Bluetooth module and displayed on an app to guide the user in the correct exercise posture. The gait was determined based on the 20˚ angle at which the foot was opened, and the correct squat posture was compared with the ratio of the pressure sensor values of the forefoot and hindfoot based on the data of the skilled person. Therefore, based on an experiment with about 90% accuracy when determining gait and 95% accuracy based on a 7:3 ratio of pressure sensor values in squat posture, a system was established to guide users to exercise in the correct posture by checking in real time through a smartphone application and correcting exercise in the wrong posture.

Influencing Factors Analysis for the Number of Participants in Public Contracts Using Big Data (빅데이터를 활용한 공공계약의 입찰참가자수 영향요인 분석)

  • Choi, Tae-Hong;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.87-99
    • /
    • 2018
  • This study analyze the factors affecting the number of bidders in public contracts by collecting contract data such as purchase of goods, service and facility construction through KONEPS among various forms of public contracts. The reason why the number of bidders is important in public contracts is that it can be a minimum criterion for judging whether to enter into a rational contract through fair competition and is closely related to the budget reduction of the ordering organization or the profitability of the bidders. The purpose of this study is to analyze the factors that determine the participation of bidders in public contracts and to present the problems and policy implications of bidders' participation in public contracts. This research distinguishes the existing sampling based research by analyzing and analyzing many contracts such as purchasing, service and facility construction of 4.35 million items in which 50,000 public institutions have been placed as national markets and 300,000 individual companies and corporations participated. As a research model, the number of announcement days, budget amount, contract method and winning bid is used as independent variables and the number of bidders is used as a dependent variable. Big data and multidimensional analysis techniques are used for survey analysis. The conclusions are as follows: First, the larger the budget amount of public works projects, the smaller the number of participants. Second, in the contract method, restricted competition has more participants than general competition. Third, the duration of bidding notice did not significantly affect the number of bidders. Fourth, in the winning bid method, the qualification examination bidding system has more bidders than the lowest bidding system.

Operation and Perception on Dietary Life Education and Nutrition Counseling of Elementary School in Chungbuk Province (충북지역 초등학교 영양교사의 식생활 교육과 영양상담 운영실태 및 인식)

  • Kim, Myoung-Sil;Kim, Hye Jin;Lee, Young Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.12
    • /
    • pp.2049-2067
    • /
    • 2013
  • The purpose of this study is to present a more effective nutrition education activation plan. As a result of investigating the dietary education operating situation, 58.9% underwent direct education, and 89.5% underwent food life education through traditional food culture succeeding business operation. The results from investigating the recognition regarding dietary education are as follows. The activation level by education types was as low as 2.24 points, the necessity was as high as 4.54 points, the difficult point in performing food life education was 'overwork' with 4.43 points, and the teaching activity ability level was 'can effectively prepare a teaching guidance plan' at 2.96 points. As a result of investigating the nutrition consultation operating situations, 62.8% underwent it and all of the students as well as some parents and teachers performed it. The consumed time per consultation for effective nutrition consultation was 10~20 minutes, the required education equipment and data were 'consultation program' with 40.3%, and the important content during consultation was 'contents related to eating habits' with 70.5%, which was recognized as the most important.

Expiration-Day Effects: The Korean Evidence (주가지수 선물과 옵션의 만기일이 주식시장에 미치는 영향: 개별 종목 분석을 중심으로)

  • Choe, Hyuk;Eom, Yun-Sung
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.41-79
    • /
    • 2007
  • This study examines the expiration-day effects of stock index futures and options in the Korean stock market. The so-called 'expiration-day effects', which are the abnormal stock price movements on derivatives expiration days, arise mainly from cash settlement. Index arbitragers have to bear the risk of their positions unless they liquidate their index stocks on the expiration day. If many arbitragers execute large buy or sell orders on the expiration day, abnormal trading volumes are likely to be observed. If a lot of arbitragers unwind positions in the same direction, temporary trading imbalances induce abnormal stock market volatility. By contrast, if some information arrives at market, the abnormal trading activity must be considered a normal process of price discovery. Stoll and Whaley(1987) investigated the aggregate price and volume effects of the S&P 500 index on the expiration day. In a related study, Stoll and Whaley(1990) found a similarity between the price behavior of stocks that are subject to program trading and of the stocks that are not. Thus far, there have been few studies about the expiration-day effects in the Korean stock market. While previous Korean studies use the KOSPI 200 index data, we analyze the price and trading volume behavior of individual stocks as well as the index. Analyzing individual stocks is important for two reasons. First, stock index is a market average. Consequently, it cannot reflect the behavior of many individual stocks. For example, if the expiration-day effects are mainly related to a specific group, it cannot be said that the expiration of derivatives itself destabilizes the stock market. Analyzing individual stocks enables us to investigate the scope of the expiration-day effects. Second, we can find the relationship between the firm characteristics and the expiration-day effects. For example, if the expiration-day effects exist in large stocks not belonging to the KOSPI 200 index, program trading may not be related to the expiration-day effects. The examination of individual stocks has led us to the cause of the expiration-day effects. Using the intraday data during the period May 3, 1996 through December 30, 2003, we first examine the price and volume effects of the KOSPI 200 and NON-KOSPI 200 index following the Stoll and Whaley(1987) methodology. We calculate the NON-KOSPI 200 index by using the returns and market capitalization of the KOSPI and KOSPI 200 index. In individual stocks, we divide KOSPI 200 stocks by size into three groups and match NON-KOSPI 200 stocks with KOSPI 200 stocks having the closest firm characteristics. We compare KOSPI 200 stocks with NON-KOSPI 200 stocks. To test whether the expiration-day effects are related to order imbalances or new information, we check price reversals on the next day. Finally, we perform a cross-sectional regression analysis to elaborate on the impact of the firm characteristics on price reversals. The main results seem to support the expiration-day effects, especially on stock index futures expiration days. The price behavior of stocks that are subject to program trading is shown to have price effects, abnormal return volatility, and large volumes during the last half hour of trading on the expiration day. Return reversals are also found in the KOSPI 200 index and stocks. However, there is no evidence of abnormal trading volume, or price reversals in the NON-KOSPI 200 index and stocks. The expiration-day effects are proportional to the size of stocks and the nearness to the settlement time. Since program trading is often said to be concentrated in high capitalization stocks, these results imply that the expiration-day effects seem to be associated with program trading and the settlement price determination procedure. In summary, the expiration-day effects in the Korean stock market do not exist in all stocks, but in large capitalization stocks belonging to the KOSPI 200 index. Additionally, the expiration-day effects in the Korean stock market are generally due, not to information, but to trading imbalances.

  • PDF

Comparative study of flood detection methodologies using Sentinel-1 satellite imagery (Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구)

  • Lee, Sungwoo;Kim, Wanyub;Lee, Seulchan;Jeong, Hagyu;Park, Jongsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.181-193
    • /
    • 2024
  • The increasing atmospheric imbalance caused by climate change leads to an elevation in precipitation, resulting in a heightened frequency of flooding. Consequently, there is a growing need for technology to detect and monitor these occurrences, especially as the frequency of flooding events rises. To minimize flood damage, continuous monitoring is essential, and flood areas can be detected by the Synthetic Aperture Radar (SAR) imagery, which is not affected by climate conditions. The observed data undergoes a preprocessing step, utilizing a median filter to reduce noise. Classification techniques were employed to classify water bodies and non-water bodies, with the aim of evaluating the effectiveness of each method in flood detection. In this study, the Otsu method and Support Vector Machine (SVM) technique were utilized for the classification of water bodies and non-water bodies. The overall performance of the models was assessed using a Confusion Matrix. The suitability of flood detection was evaluated by comparing the Otsu method, an optimal threshold-based classifier, with SVM, a machine learning technique that minimizes misclassifications through training. The Otsu method demonstrated suitability in delineating boundaries between water and non-water bodies but exhibited a higher rate of misclassifications due to the influence of mixed substances. Conversely, the use of SVM resulted in a lower false positive rate and proved less sensitive to mixed substances. Consequently, SVM exhibited higher accuracy under conditions excluding flooding. While the Otsu method showed slightly higher accuracy in flood conditions compared to SVM, the difference in accuracy was less than 5% (Otsu: 0.93, SVM: 0.90). However, in pre-flooding and post-flooding conditions, the accuracy difference was more than 15%, indicating that SVM is more suitable for water body and flood detection (Otsu: 0.77, SVM: 0.92). Based on the findings of this study, it is anticipated that more accurate detection of water bodies and floods could contribute to minimizing flood-related damages and losses.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model (머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로)

  • Eom, Haneul;Kim, Jaeseong;Choi, Sangok
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.105-129
    • /
    • 2020
  • This study uses corporate data from 2012 to 2018 when K-IFRS was applied in earnest to predict default risks. The data used in the analysis totaled 10,545 rows, consisting of 160 columns including 38 in the statement of financial position, 26 in the statement of comprehensive income, 11 in the statement of cash flows, and 76 in the index of financial ratios. Unlike most previous prior studies used the default event as the basis for learning about default risk, this study calculated default risk using the market capitalization and stock price volatility of each company based on the Merton model. Through this, it was able to solve the problem of data imbalance due to the scarcity of default events, which had been pointed out as the limitation of the existing methodology, and the problem of reflecting the difference in default risk that exists within ordinary companies. Because learning was conducted only by using corporate information available to unlisted companies, default risks of unlisted companies without stock price information can be appropriately derived. Through this, it can provide stable default risk assessment services to unlisted companies that are difficult to determine proper default risk with traditional credit rating models such as small and medium-sized companies and startups. Although there has been an active study of predicting corporate default risks using machine learning recently, model bias issues exist because most studies are making predictions based on a single model. Stable and reliable valuation methodology is required for the calculation of default risk, given that the entity's default risk information is very widely utilized in the market and the sensitivity to the difference in default risk is high. Also, Strict standards are also required for methods of calculation. The credit rating method stipulated by the Financial Services Commission in the Financial Investment Regulations calls for the preparation of evaluation methods, including verification of the adequacy of evaluation methods, in consideration of past statistical data and experiences on credit ratings and changes in future market conditions. This study allowed the reduction of individual models' bias by utilizing stacking ensemble techniques that synthesize various machine learning models. This allows us to capture complex nonlinear relationships between default risk and various corporate information and maximize the advantages of machine learning-based default risk prediction models that take less time to calculate. To calculate forecasts by sub model to be used as input data for the Stacking Ensemble model, training data were divided into seven pieces, and sub-models were trained in a divided set to produce forecasts. To compare the predictive power of the Stacking Ensemble model, Random Forest, MLP, and CNN models were trained with full training data, then the predictive power of each model was verified on the test set. The analysis showed that the Stacking Ensemble model exceeded the predictive power of the Random Forest model, which had the best performance on a single model. Next, to check for statistically significant differences between the Stacking Ensemble model and the forecasts for each individual model, the Pair between the Stacking Ensemble model and each individual model was constructed. Because the results of the Shapiro-wilk normality test also showed that all Pair did not follow normality, Using the nonparametric method wilcoxon rank sum test, we checked whether the two model forecasts that make up the Pair showed statistically significant differences. The analysis showed that the forecasts of the Staging Ensemble model showed statistically significant differences from those of the MLP model and CNN model. In addition, this study can provide a methodology that allows existing credit rating agencies to apply machine learning-based bankruptcy risk prediction methodologies, given that traditional credit rating models can also be reflected as sub-models to calculate the final default probability. Also, the Stacking Ensemble techniques proposed in this study can help design to meet the requirements of the Financial Investment Business Regulations through the combination of various sub-models. We hope that this research will be used as a resource to increase practical use by overcoming and improving the limitations of existing machine learning-based models.