Korean Associaton of Information & Telecommunication
정보화사회
/
s.92
/
pp.30-34
/
1995
정보통신부는 7월 4일 통신사업 경쟁력강화를 위한 기본정책방향을 수립.발표하였다. 통신사업의 세계화를 추진하고 국가기간 통신망운영의 안정성을 확보하며 우리 통신사업자의 국제경쟁력을 강화하기 위한 것으로 정보통신부가 '80년대 후반부터 일관되게 추진해 온 통신사업경쟁구도의 최종적인 모습을 보여준다는 중요한 의미를 갖고 있다. 정보통신부는 관련기관 협의와 공청회를 거쳐 8월 중 구체적인 시행계획을 확정한다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.94-96
/
2001
현재 인터넷상에서 제공되고 있는 대부분의 서치엔진들은 정보소스에 접근해서 이를 가져오는 웹 로봇(webbot)이라고 불리우는 에이전트를 이용한다. 그런데 이런 웹 로봇들이 웹 문서를 검색하는 방법은 극히 단순하다. 물론 많은 정보를 가지고 오는 것에 초점이 맞추어져 있어서 정확도를 중시하지 않는 것에도 한 원인이 있다. 범용 검색엔진과는 달리 검색하는 영역을 축소하여 특정 주제에 관련된 정보만을 더 정확히 찾아주는 검색엔진의 필요성이 증가하고 있다. 이에 본 논문에서는 강화 학습 방법을 이용하여 웹 상에 존재하는 정보 중에서 특정 주제의 웹 페이지를 보다 더 정확히 찾는 방법을 제시한다. 강화 학습은 웹 상의 하이퍼링크를 따라가는 문제에 있어서 미래에 이로움을 주는 행동의 효용성을 측정하는데 있어서 이점을 보인다. 강화 학습을 이용하여 제시된 방법을 통한 실험에서는 일반적인 방법보다 더 적은 링크를 따라가고도 더 정확한 결과를 보였다.
Annual Conference on Human and Language Technology
/
2008.10a
/
pp.201-206
/
2008
본 논문은 한국어 문서 감정분류에 기반이 되는 감정 자질의 가중치 강화를 통해 감정분류의 성능 향상을 얻을 수 있는 기법을 제안한다. 먼저, 어휘 자원인 감정 자질을 확보하고, 확장된 감정 자질이 감정 분류에 얼마나 기여하는지를 평가한다. 그리고 학습 데이터를 이용하여 얻을 수 있는 감정 자질의 카이 제곱 통계량(${\chi}^2$ statics)값을 이용하여 각 문장의 감정 강도를 구한다. 이렇게 구한 문장의 감정 강도의 값을 TF-IDF 가중치 기법에 접목하여 감정 자질의 가중치를 강화시킨다. 마지막으로 긍정 문서에서는 긍정 감정 자질만 강화하고 부정 문서에서는 부정 감정 자질만 강화하여 학습하였다. 본 논문에서는 문서 분류에 뛰어난 성능을 보여주는 지지 벡터 기계(Support Vector Machine)를 사용하여 제안한 방법의 성능을 평가한다. 평가 결과, 일반적인 정보 검색에서 사용하는 내용어(Content Word) 기반의 자질을 사용한 경우 보다 약 2.0%의 성능 향상을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.853-855
/
2005
현재 표준화가 진행중인 SVC(Scalable Video Codec)에는 기존의 FGS방법이 아닌 Cyclic-FGS를 사용하여 영상을 강화하고 있다. 이 Cyclic-FGS 블록간에 Stocking Effect를 줄일 수 있고 넓은 영역을 강화할 수 있다는 장점이 있다. 하지만 널은 영역을 강화하기 때문에 기존의 FGS와 달리 ROI를 강화하는데는 적합하지 않다. 따라서 본 논문에서는 Cyclic-FGS에 적합한 새로운 Ordering 방법을 제안한다. 이 방법을 사용하면 기존의 FGS에서 사용한 Bit-shift방법을 사용하지 않고도 비슷한 효과를 낼 수 있으며, 우리가 원하는 ROI를 강화시킬 수 있다. ROI를 중점적으로 강화를 하다 보면 전체 영상에 대한 화질은 떨어질 수 있다. 그러나 두 가지 모드를 두어서 중점강화 또는 전체영상과 비교해 화질열화가 거의 없는 강화를 할 수 있게 하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2007.11a
/
pp.294-302
/
2007
멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한RBFN기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서는 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 RBFN 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델을 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적이 절대적 멀티 에이전트 환경인 고양이와 쥐 게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 RBFN 기반의 정책 모델의 효과를 분석해본다.
Elderly welfare practitioners study on job performance systems and information security management though important information, including personal information, social services for the elderly extent of protection is insufficient. The elder welfare institution engaged in information security of whether the research was conducted to enhance information security capabilities against How does affect the information security acts as a parameter. The empirical research was conducted by latent mean analysis by gender of workers. As a result of the study, there were differences among the groups according to gender in relation to information security awareness, information security capacity enhancement, and information security behavior. There were gender differences in information security behavior. It has been found that the strengthening of information security has an important influence on information security behavior.
"Information Technology for that Inter/Intra Workgroup Collaborations"로 정의되는 그룹웨어는 조직의 경쟁력강화를 지원하는 정보기술의 하나로 자리잡게 된 새로운 솔루션("Solutions for Competitive Advantages")이다.
Kim, Dong-Hyun;Kim, Min-Woo;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.45-46
/
2019
본 논문에서는 Upper Confidence Bound (UCB)를 이용한 효율적인 패킷 스케줄링 기법을 제안한다. 기존 e-greedy 등 강화학습의 보상을 극대화 할 수 있는 행동을 선택하는 것과 다르게, 제안된 UCB를 이용한 강화학습 패킷 스케줄링 기법은 각 상태에서 행동을 선택한 횟수를 추가적으로 고려한다. 이는 보다 효율적인 강화학습의 탐구(Exploration)를 가능케 한다. 본 논문에서는 컴퓨터 시뮬레이션을 통하여 제안하는 UCB를 이용한 강화학습 패킷 스케줄링 기법이 기존의 e-greedy 및 softmax를 기반으로 한 패킷 스케줄링 기법에 비해 정확도 측면에서 향상된 정확도를 보인다.
강화 학습은 일반적으로 제어 로봇과 관련이 있는 순차적 의사결정을 위한 학습의 한 형태이다. 이 강화 학습은 행동에 대한 보상을 최대로 하는 정책을 학습하는 것을 목표로 한다. 하지만, 강화 학습을 실제 세계에 적용하기에는 많은 제약사항이 존재하며 실제 세계의 복잡한 환경에서 좋은 정책을 학습하는 것은 매우 어렵다. Unity는 강화 학습 시뮬레이션을 위한 전용 Toolkit을 제공한다. 이러한 이유로 Unity를 시뮬레이터로서 사용하는 것이 좋은 정책을 학습하는 훈련의 근거가 된다. 따라서 본 논문에서는 강화 학습을 실제 세계에 바로 적용시키기 전에 Unity Machine Learning Agents Toolkit을 사용하여 실제 세계와 비슷한 환경을 만들고 강화 학습을 통해 에이전트를 미리 학습시켜보는 과정을 수행해봄으로써 시뮬레이터의 필요성을 부각시킨다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.467-470
/
2011
최근 7.7 DDoS 사건과 해킹 사건 등으로 국가기관의 정보보호에 관한 중요성이 대두되고 있고, 정보보호 관련 법률이 국회에서 논의되고 있다. 하지만 국회사무처의 정보보호컨설팅 결과 61.2점으로 매우 낮게 평가 되었으며, H/W, S/W분야의 평가에서도 보안성이 취약한 것으로 나타났다. 본 논문은 입법지원 기관인 국회사무처의 인터넷 네트워크와 사용 시스템 등에 대한 관리적, 기술적, 물리적 보안 요소에 대한 현황을 기밀성, 가용성, 무결성 등의 보안기준에 따라 파악하고, 이를 분석한다. 그리고 입법지원 기관이 갖추어야 할 인터넷 네트워크와 사용 시스템 등에 대한 보안 강화를 위한 설계를 연구한다. 본 연구를 통해 입법지원기관의 보안 현황을 분석하고, 사회적인 책임기관으로서 역할과 보안 강화를 위한 자료를 제공하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.