• Title/Summary/Keyword: 정밀시각동기

Search Result 46, Processing Time 0.026 seconds

Precise Point Positioning using Atomium (아토미움을 이용한 정밀절대측위)

  • Yu, Dong-Hui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.910-915
    • /
    • 2018
  • The precise time, which is an essential element of the Global Navigation Satellite System (GNSS), such as US GPS, GLONASS in Russia, Galileo in Europe, and Beidou in China, is an important foundation for various economic activities around the world. Communication systems, power grids, IoT, Cloud computing and financial networks operate based on the precise time not only for the operating principles, but also for the synchronization and operational efficiency between tasks. In this paper, we introduce the Atomium software for the first time in South Korea. Atomium was developed by ORB in Belgium to calculate the clock error(clock solution) with GNSS signal observation data based on PPP method. The observation data is provided by Korea Research Institute of Standards and Science(KRISS). The results of MJD57106 with Atomium software are presented.

PTP Management Node-based Time Synchronization Error Detection and Recovery System (PTP Management Node 기반 시각동기 오류 검출 및 대응 시스템)

  • Kim, Yoon Hyun;Son, Kyou Jung;Seo, Young Duk;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.248-253
    • /
    • 2020
  • This paper proposed PTP(Precision Time Protocol) management node-based time synchronization error detection and recovery system. The proposed system is to maintain the preciseness of time synchronization under time synchronization error situations on IEEE 1588-based network environment. To demonstrate the proposed time synchronization error detection and recovery system, PTP implemented EVM(Evaluation Module)-based experiments were performed. As a results of the experiments, it is shown that the proposed system effectively maintains the preciseness of time synchronization under time synchronization error situations.

Position Estimation Technique of High Speed Vehicle Using TLM Timing Synchronization Signal (TLM 시각 동기 신호를 이용한 고속 이동체의 위치 추정)

  • Jin, Mi-Hyun;Koo, Ddeo-Ol-Ra;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.319-324
    • /
    • 2022
  • If radio interference occurs or there is no navigation device, radio navigation of high-speed moving object becomes impossible. Nevertheless, if there are multiple ground stations and precise range measurement between the high-speed moving object and the ground station can be secured, it is possible to estimate the position of moving object. This paper proposes a position estimation method using high-precision TDOA measurement generated using TLM signal. In the proposed method, a common error of moving object is removed using the TDOA measurements. The measurements is generated based on TLM signal including SOQPSK PN symbol capable of precise timing synchronization. Therefore, since precise timing synchronization of the system has been performed, the timing error between ground stations has a very small value. This improved the position estimation performance by increasing the accuracy of the measured values. The proposed method is verified through software-based simulation, and the performance of estimated position satisfies the target performance.

A Network Time Server using CPS (GPS를 이용한 네트워크 시각 서버)

  • 황소영;유동희
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.5
    • /
    • pp.1004-1009
    • /
    • 2004
  • Precise time synchronization is a main technology in high-speed communications, parallel and distributed processing systems, Internet information industry and electronic commerce. Synchronized clocks are useful for many leasers. Often a distributed system is designed to realize some synchronized behavior, especially in real-time processing in factories, aircraft, space vehicles, and military applications. Nowadays, time synchronization has been compulsory thing as distributed processing and network operations are generalized. A network time server obtains, keeps accurate and precise time by synchronizing its local clock to standard reference time source and distributes time information through standard time synchronization protocol. This paper describes design issues and implementation of a network time server for time synchronization especially based on a clock model. The system uses GPS (Global Positioning System) as a standard reference time source and offers UTC (universal Time coordinated) through NTP (Network Time protocol). Implementation result and performance analysis are also presented.

A Study of High-Precision Time-Synchronization for TDoA-Based Location Estimation (TDoA 기반의 위치 추정을 위한 초정밀 시각동기에 관한 연구)

  • Kim, Jae Wan;Eom, Doo Seop
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • Presently, there are many different technologies used for position detection. However, as signal-receiving devices operating in different locations must detect the precise position of objects located at long distances, it is essential to know the precise time at which an object's or a user's terminal device sends a signal. For this purpose, the existing time of arrival (ToA) technology is not sufficiently reliable, and the existing time difference of arrival (TDoA) technology is more suitable. If a TDoA-based electric surveillance system and other tracking devices fail to achieve precise time-synchronization between devices with separation distance operation, it is impossible to obtain correct TDoA values from the signals sent by the signal-receiving devices; this failure to obtain the correct values directly affects the location estimation error. For this reason, the technology for achieving precise time synchronization between signal-receiving devices in separation distance operation, among the technologies previously mentioned, is a core technology for detecting TDoA-based locations. In this paper, the accuracy of the proposed time synchronization and the measurement error in the TDoA-based location detection technology is evaluated. The TDoA-based location measurement error is significantly improved when using the proposed method for time-synchronization error reduction.

Design of Performance Monitoring System for eLoran Time Synchronization Service (eLoran 시각동기 성능 모니터링 시스템 설계)

  • Seo, Kiyeol;Son, Pyo-Woong;Han, Younghoon;Park, Sang-Hyun;Lee, Jong-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.815-821
    • /
    • 2021
  • This study addresses on the design of performance monitoring system for the time synchronization service of the enhanced long-range navigation (eLoran) system, which has a representative ground-wave radio broadcast system capable of providing positioning, navigation, timing and data (PNT&D) services. The limitations of time-synchronized systems due to the signal vulnerabilities of the global navigation satellite system (GNSS) are explained, and the performance monitoring system for the eLoran timing service as a backup to the GNSS is proposed. The time synchronization service using eLoran system as well as system configurations and the user requirements in the differential Loran (dLoran) system are described to monitor the time synchronization performance. The results of the designed system are presented for long-term operation in the eLoran testbed environment. As the results of time performance monitoring, we were able to verify the time synchronization precision within 43.71 ns without corrections, 22.52 ns with corrections. Based on these results, the eLoran system can be utilized as a precise time synchronization source for GPS timing backup.

A Study on Time Synchronization Method for IED Using IEC 61850 (IEC 61850용 IED의 시각 동기 방안 연구)

  • An, Yong-Ho;Kim, Byeong-Heon;Jang, Byung-Tae;Song, In-Jun;Kim, Young-Don;Jang, Su-Hyeong;Kim, Kyung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.277-279
    • /
    • 2008
  • 현재 많은 전력계통용 보호제어 벤더들은 변전소 자동화 국제표준 프로토콜인 IEC 61850을 적용한 전력 장비들을 개발하여 변전소에 적용하고 있다. 이러한 많은 장비들은 표준화된 IEC 61850 프로토콜을 적용하여 상호 호환성을 유지하였으며, 기존에 적용되고 있는 표준화된 기술들을 채택하고 있다. 변전소 장비들은 정밀한 시간 동기를 위해서 표준화된 시각 동기 프로토콜인 SNTP(Simple Network Time Protocol)나 NTP(Network Time Protocol)를 사용하고 있다. 본 연구에서는 IEC 61850 프로토콜을 적용한 IED가 시각 동기 장치로부터 시간 동기화되는 방안에 대해 연구하였다.

  • PDF

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Time Synchronization Technique for GNSS Jamming Monitoring Network System (GNSS 재밍 신호 모니터링 네트워크 시스템을 위한 독립된 GNSS 수신기 간 시각 동기화 기법)

  • Jin, Gwon gyu;Song, Young jin;Won, Jong hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2021
  • Global Navigation Satellite System (GNSS) receivers are intrinsically vulnerable to radio frequency jamming signals due to the fundamental property of radio navigation systems. A GNSS jamming monitoring system that is capable of jamming detection, classification and localization is essential for infrastructure for autonomous driving systems. For these 3 functionalities, a GNSS jamming monitoring network consisting of a multiple of low-cost GNSS receivers distributed in a certain area is needed, and the precise time synchronizaion between multiple independent GNSS receivers in the network is an essential element. This paper presents a precise time synchronization method based on the direct use of Time Difference of Arrival (TDOA) technique in signal domain. A block interpolation method is additionally incorporated into the method in order to maintain the precision of time synchronization even with the relatively low sampling rate of the received signals for computational efficiency. The feasibility of the proposed approach is verified in the numerical simualtions.

Synchronized Sampling Structure applied HW/SW platform for LAN-based Digital Substation Protection (LAN 기반 디지털 변전소 보호를 위한 동기 샘플링 구조적용 HW/SW 플랫폼 기술)

  • Son, Kyou Jung;Nam, Kyung-Deok;An, Gi Sung;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.178-185
    • /
    • 2020
  • This paper proposes precise time synchronization-based synchronized sampling structure applied HW/SW platform for LAN-based protection of future digital substations. The integrated software of the proposed platform includes IEC 61850 protocol, IEEE 1588 precision time protocol and synchronized sampling structure. The proposed platform expected to provide a basis of an application of future distributed sensing data-based protection and control methods by providing synchronized measurement among IEDs. The implementation of the proposed HW/SW platform technique was performed using TMDXIDK572 multi-core/multi-processor evaluation module and its time synchronization performance and synchronized sampling function were confirmed through the performance tests.