Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
Korean Journal of Remote Sensing
/
v.39
no.5_1
/
pp.695-713
/
2023
In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.
Yu Jeong Roh;Ji Eun Kim;You Jeong Jin;Ayun Seol;Hee Jin Song;Tae Ryeol Kim;Kyeong Seon Min;Eun Seo Park;Ki Ho Park;Dae Youn Hwang
Journal of Life Science
/
v.33
no.11
/
pp.887-896
/
2023
The inflammatory response have been considered as one of important targets for cancer treatment because they play a key role during all steps of tumor development including initiation, promotion, malignant conversion and progression. To investigate the anti-inflammatory response during anti-tumor activity of an aqueous extracts of Ecklonia cava (AEC), alterations on the distribution of mast cells and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-κB, inflammasome compositional protein and inflammatory cytokines were examined in CT26 colon tumor-bearing BALB/cKorl syngeneic mice after administrating AEC for five weeks. After treatment of AEC, total weight of tumor and necrotic region of tumor section were significantly decreased compared to vehicle treated group. The number of infiltered mast cells was higher in AEC treated group than vehicle treated group, while the expression levels of COX-2 and iNOS were decreased in AEC treated group. Also, similar decrease pattern were detected in the expression levels of NF-κB, NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 (Cas-1) after AEC treatment although the decrease rate was varied. Furthermore, the mRNA expressions of three inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α) and interleukin-6 (IL-6) were remarkably decreased in AEC treated group compared to vehicle treated group. These results suggest that inhibition of inflammatory response may be tightly associated with anti-tumor activity of AEC in CT26 colon tumor-bearing BALB/cKorl syngeneic mice.
Myoung Hun Kim;Se Young Pyo;Young Joo Jeong;Sung Woo Park;Mi Kyoung Seo;Won Hee Lee;Sang-Hwa Urm;Mooseong Kim;Jung Goo Lee;Dae-Hyun Seog
Journal of Life Science
/
v.33
no.11
/
pp.868-875
/
2023
Kinesin-1 is a motor protein identified as the first member of the kinesin superfamily (KIF), which plays a role in intracellular cargo transport by acting as microtubule-dependent motor proteins within cells. Kinesin-1 consists of two heavy chains (KHCs, also known as KIF5s) and two light chains (KLCs). The 93 amino acids in the carboxyl (C)-terminal tail region of KIF5A are not homologous to the C-terminal tail region of KIF5B or the C-terminal tail region of KIF5C. In this study, we used a yeast two-hybrid screen to identify the binding proteins that interacted with the C-terminal region of KIF5A. We found an association between KIF5A and CUE domain containing 2 (CUEDC2), which is proposed to function as an adaptor protein involved in ubiquitination pathways and protein trafficking. CUEDC2 bound to the C-terminal region of KIF5A and did not interact with KIF5B (the motor of kinesin-1), KIF3A (the motor of kinesin-2), or kinesin light chain 1 (KLC1). KIF5A specifically bound to the C-terminal region of CUEDC2. Furthermore, KIF5A did not interact with another isoform: CUEDC1. In addition, glutathione S-transferase (GST) pull-downs showed that KIF5A directly bound GST-CUEDC2 but did not interact with GST-CUEDC1 and GST alone. When myc-KIF5A and EGFP-CUEDC2 were co-expressed in HEK-293T cells, CUEDC2 co-immunoprecipitated with kinesin-1, and myc-KIF5A and FLAG-CUEDC2 colocalized in the cells. These results suggest that in intracellular cargo transport by kinesin-1, CUEDC2 serves as an adaptor protein connecting kinesin-1 and cargo by binding to KIF5A.
Seung Sub Bae;Yong Min Kwon;Dawoon Chung;Woon-Jong Yu;Kichul Cho;Eun-Seo Cho;Yoon-Hee Jung;Yun Gyeong Park;Hyemi Ahn;Dae-Sung Lee;Jin-Soo Park;Jaewook Lee;Dong-Chan Oh;Ki-Bong Oh;EunJi Cho;Sang-Ik Park;You-Jin Jeon;Hyo-Geun Lee;Keun-Yong Kim;Sang-Jip Nam;Hyukjae Choi;Cheol Ho Pan;Grace Choi
Journal of Marine Life Science
/
v.8
no.2
/
pp.136-149
/
2023
Basic bioactivities (antioxidant, anti-inflammatory, antibacterial, anticancer, antiviral) were investigated from 370 strains of marine bacteria, fungi, and microalgae obtained from various marine environmental regions in Korea, and the activity results were obtained at the collection site, isolation source, and species level was compared. In the case of marine bacteria, strains belonging to the generally useful genera Streptomyces and Bacillus were observed to have particularly strong efficacy and useful resources were mainly isolated from marine sediments. In the case of marine fungi and microalgae, results showing strong species-specific activity were confirmed, and results showing efficacy-specific activity were also obtained. Based on these results, it is a research result that can facilitate priority access as a strategic material for industrial revitalization and the establishment of a strategy to secure resources based on usefulness when conducting research on chemicals that are selectively effective against specific diseases or when conducting resource-based research. In addition, we believe that by using these results as material for sale through the Marine BioBank (MBB), academia and industry can use them to help accelerate the revitalization of the marine bio industry.
The benzo[a]pyrene in edible oils is extracted using methods such as Liquid-liquid, soxhlet and ultrasound-assisted extraction. However these extraction methods have significant drawbacks, such as long extraction time and large amount of solvent usage. To overcome these drawbacks, this study attempted to improve the current complex benzo[a]pyrene analysis method by applying the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method that can be analyzed in a simple and short time. The QuEChERS method applied in this study includes extraction of benzo[a]pyrene into n-hexane saturated acetonitrile and n-hexane. After extraction and distribution using magnesium sulfate and sodium chloride, benzo[a]pyrene is analyzed by liquid chromatography with fluorescence detector (LC/FLR). As a result of method validation of the new method, the limit of detection (LOD) and quantification (LOQ) were 0.02 ㎍/kg and 0.05 ㎍/kg, respectively. The calibration curves were constructed using five levels (0.1~10 ㎍/kg) and coefficient (R2) was above 0.99. Mean recovery ratio was ranged from 74.5 to 79.3 % with a relative standard deviation (RSD) between 0.52 to 1.58 %. The accuracy and precision were 72.6~79.4 % and 0.14~7.20 %, respectively. All results satisfied the criteria ranges requested in the Food Safety Evaluation Department guidelines (2016) and AOAC official method of analysis (2023). Therefore, the analysis method presented in this study was a relatively simple pretreatment method compared to the existing analysis method, which reduced the analysis time and solvent use to 92 % and 96 %, respectively.
The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.
Youngmin Seo;Youjeong Youn;Seoyeon Kim;Jonggu Kang;Yemin Jeong;Soyeon Choi;Yungyo Im;Yangwon Lee
Korean Journal of Remote Sensing
/
v.39
no.6_1
/
pp.1413-1425
/
2023
The increasing frequency of wildfires due to climate change is causing extreme loss of life and property. They cause loss of vegetation and affect ecosystem changes depending on their intensity and occurrence. Ecosystem changes, in turn, affect wildfire occurrence, causing secondary damage. Thus, accurate estimation of the areas affected by wildfires is fundamental. Satellite remote sensing is used for forest fire detection because it can rapidly acquire topographic and meteorological information about the affected area after forest fires. In addition, deep learning algorithms such as convolutional neural networks (CNN) and transformer models show high performance for more accurate monitoring of fire-burnt regions. To date, the application of deep learning models has been limited, and there is a scarcity of reports providing quantitative performance evaluations for practical field utilization. Hence, this study emphasizes a comparative analysis, exploring performance enhancements achieved through both model selection and data design. This study examined deep learning models for detecting wildfire-damaged areas using Landsat 8 satellite images in California. Also, we conducted a comprehensive comparison and analysis of the detection performance of multiple models, such as U-Net and High-Resolution Network-Object Contextual Representation (HRNet-OCR). Wildfire-related spectral indices such as normalized difference vegetation index (NDVI) and normalized burn ratio (NBR) were used as input channels for the deep learning models to reflect the degree of vegetation cover and surface moisture content. As a result, the mean intersection over union (mIoU) was 0.831 for U-Net and 0.848 for HRNet-OCR, showing high segmentation performance. The inclusion of spectral indices alongside the base wavelength bands resulted in increased metric values for all combinations, affirming that the augmentation of input data with spectral indices contributes to the refinement of pixels. This study can be applied to other satellite images to build a recovery strategy for fire-burnt areas.
Eunkyung Lee;Sujung Bae;Jae-Hyun Ahn;Kyeong-Sang Lee
Korean Journal of Remote Sensing
/
v.39
no.6_2
/
pp.1553-1563
/
2023
The Geostationary Ocean Color Imager-II (GOCI-II) is a satellite designed for ocean color observation, covering the Northeast Asian region and the entire disk of the Earth. It commenced operations in 2020, succeeding its predecessor, GOCI, which had been active for the previous decade. In this study, we aimed to enhance the atmospheric correction algorithm, a critical step in producing satellite-based ocean color data, by performing cross-calibration on the GOCI-II near-infrared (NIR) band using the GOCI NIR band. To achieve this, we conducted a cross-calibration study on the top-of-atmosphere (TOA) radiance of the NIR band and derived a vicarious calibration gain for two NIR bands (745 and 865 nm). As a result of applying this gain, the offset of two sensors decreased and the ratio approached 1. It shows that consistency of two sensors was improved. Also, the Rayleigh-corrected reflectance at 745 nm and 865 nm increased by 5.62% and 9.52%, respectively. This alteration had implications for the ratio of Rayleigh-corrected reflectance at these wavelengths, potentially impacting the atmospheric correction results across all spectral bands, particularly during the aerosol reflectance correction process within the atmospheric correction algorithm. Due to the limited overlapping operational period of GOCI and GOCI-II satellites, we only used data from March 2021. Nevertheless, we anticipate further enhancements through ongoing cross-calibration research with other satellites in the future. Additionally, it is essential to apply the vicarious calibration gain derived for the NIR band in this study to perform vicarious calibration for the visible channels and assess its impact on the accuracy of the ocean color products.
In ocean color remote sensing, atmospheric correction is a vital process for ensuring the accuracy and reliability of ocean color products. Furthermore, in recent years, the remote sensing community has intensified its requirements for understanding errors in satellite data. Accordingly, research is currently addressing errors in remote sensing reflectance (Rrs) resulting from inaccuracies in meteorological variables (total ozone, pressure, wind field, and total precipitable water) used as auxiliary data for atmospheric correction. However, there has been no investigation into the error in Rrs caused by the variability of the water vapor profile, despite it being a recognized error source. In this study, we used the Second Simulation of a Satellite Signal Vector version 2.1 simulation to compute errors in water vapor transmittance arising from variations in the water vapor profile within the GOCI-II observation area. Subsequently, we conducted an analysis of the associated errors in ocean color products. The observed water vapor profile not only exhibited a complex shape but also showed significant variations near the surface, leading to differences of up to 0.007 compared to the US standard 62 water vapor profile used in the GOCI-II atmospheric correction. The resulting variation in water vapor transmittance led to a difference in aerosol reflectance estimation, consequently introducing errors in Rrs across all GOCI-II bands. However, the error of Rrs in the 412-555 nm due to the difference in the water vapor profile band was found to be below 2%, which is lower than the required accuracy. Also, similar errors were shown in other ocean color products such as chlorophyll-a concentration, colored dissolved organic matter, and total suspended matter concentration. The results of this study indicate that the variability in water vapor profiles has minimal impact on the accuracy of atmospheric correction and ocean color products. Therefore, improving the accuracy of the input data related to the water vapor column concentration is even more critical for enhancing the accuracy of ocean color products in terms of water vapor absorption correction.
In the recent COVID-19 pandemic, urban agriculture is attracting attention as a healing concept. In 2020, 1,848,000 people participated in urban agriculture activities in Korea. Therefore, this study was conducted to empirically analyze the factors affecting the intention to participate in urban agriculture, which is rapidly increasing. The theoretical basis of this study is the experiential economy theory of Pine II and Gilmore and the experiential theory of Schmitt. As independent variables, a total of five variables were set as the four elements of Pine II and Gilmore's experiential economy theory, namely, educational, entertainment, escapist, and aesthetic experiences, and relational experience reclassified using Schmitt's theory. Interest was set as a mediating variable between these independent variables and the dependent variable, intention to participate in urban agriculture. For empirical analysis, data were collected through a survey. Based on the significant 314 samples of the collected data, the hypothesis was tested through statistical analysis. First, as a result of testing the influence relationship between the independent and dependent variables, educational, entertainment, and escapist experiences had a significant positive (+) effect on the intention to participate in urban agriculture. The impact of the influence was in the order of entertainment experience, escapist experience, and educational experience. There was no significant influence relationship between aesthetic experience, relational experience and intention to participate in urban agriculture. On the other hand, as a result of this study, interest introduced as a mediating variable was found to play a mediating role between entertainment, escapist, aesthetic experiences and intention to participate in urban agriculture. The mediating effect of interest was not tested between educational, relational experiences and intention to participate in urban agriculture. This study approached urban agriculture participation from the concept of healing and analyzes the factors affecting participation in urban agriculture activities empirically based on a theoretical framework by combining and analyzing the representative Pine II and Gilmore theories and Schmitt theories. It had academic significance. In addition, it was meaningful to suggest that the healing concept approach is directional in relation to urban agriculture by revealing that entertainment and escapist experiences are important influencing variables in decision-making to participate in urban agriculture in practice.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.