• 제목/요약/키워드: 정규선형 모형

검색결과 91건 처리시간 0.022초

공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관 (Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes)

  • 박진철
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.353-360
    • /
    • 2015
  • 공간적으로 관측되는 연속형 자료를 분석하는 모형으로 공간적 상관관계를 고려한 다양한 정규모형이 지난 수십 년간 제안되었다. 그 중에서 공간효과를 랜덤효과로 모형화하는 공간선형모형(Spatial Linear Mixed Model; SLMM)이 가장 널리 활용되는 모형 중 하나일 것이다. 연결함수(link function)을 사용하면 SLMM을 비정규 데이터도 적용할 수 있는 일반화된 공간선형모형(Spatial Generalized Linear Mixed Model; SGLMM)으로 자연스럽게 확장할 수 있다. 이 논문에서는 가장 널리 활용되는 SGLMM을 알아보고 실제 데이터 적용사례를 R 패키지를 활용하여 제시하고자 한다.

콘크리트 댐의 비선형 지진해석에서의 유한요소망 영향 (Finite Element Mesh Dependency in Nonlinear Earthquake Analysis of Concrete Dams)

  • 이지호
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.637-644
    • /
    • 2001
  • 본 논문에서는 콘크리트 댐체의 균열 발생 및 진전해석을 포함하는 비선형 지진해석에서 유한요소망 의존성을 제거시키고 안정적인 해를 얻기 위하여 균열모형으로 사용되는 소성손상모형 및 손상역학모형을 duvaut-lions모형에 기초한 점소성모형으로 정규화하는 방법을 기술하였다. 제안된 방법으로 정규화된 소성손상모형과 그렇지 않은 소성손상모형를 이용하여 지진하중을 받는 콘크리트 댐체의 동적 손상해석을 수행하여 여러 형태의 유한요소망이 해석결과에 미치는 영향을 분석하였다. 해석결과로부터 정규화한 소성손상모형은 유한요소망의 크기 및 배열에 영향을 크게 받지 않고 객관적이며 안정적인 해를 계산하는 반면, 정규화되지 않은 균열모형은 요소망에 의존적인 불안정한 결과를 산출함을 관찰할 수 있었다.

Density Estimation of Mixture Normal Distribution with Binned Data Using Nonlinear Regression

  • 나영호;오창혁
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2004년도 춘계학술대회
    • /
    • pp.127-130
    • /
    • 2004
  • 혼합정규분포에서 얻어진 히스토그램 자료에서 모수의 추정은 EM 알고리즘 혹은 스프라인 방법이 흔히 이용되고 있다. 본 논문에서는 히스토그램 자료를 비선형회귀모형으로 적합하는 방법을 제시하고, 시뮬레이션으로 제시된 방법과 EM 알고리즘 방법을 비교하였다.

  • PDF

제한조건이 있는 선형회귀 모형에서의 베이지안 변수선택 (Bayesian Variable Selection in Linear Regression Models with Inequality Constraints on the Coefficients)

  • 오만숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.73-84
    • /
    • 2002
  • 계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.

로버스트 선형혼합모형을 이용한 필드시험 데이터 분석 (Analysis of Field Test Data using Robust Linear Mixed-Effects Model)

  • 홍은희;이영조;옥유진;나명환;노맹석;하일도
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.361-369
    • /
    • 2015
  • 연속측도의 반응변수가 반복측정된 실험 자료의 분석을 위해 흔히 선형혼합모형이 사용된다. 그러나, 잔차의 분포가 이분산성이거나 비정규성을 가질 때 표준적인 선형혼합모형은 적절하지 않은 결과를 가져온다. 잔차의 분포가 두터운 꼬리를 가진 비정규분포를 보이는 타이어 필드시험 데이터를 로버스트 선형혼합모형에 적합시킴으로써 보다 더 정확하고 신뢰할 수 있는 분석결과를 얻을 수 있다. 추가적으로 신뢰성 분석 결과를 제시한다.

편스플라인 추정량의 편의에 대한 점근 정규성 (Asymptotics Normality for Bias fo Partial Spline Estimator)

  • 추인선;최재룡
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.371-381
    • /
    • 2000
  • 비모수 회귀모형에 있어서 평활스플라인에 대하여 언급하고, 그 간단한 성질을 다룬다. 선형회귀나 다항식회귀에서는 적합하기 나쁜 데이터가 많이 존재한다. 설명변수가 여러 개인 경우에 준모수 회귀모형은 하나 혹은 그 이상의 변수에 대해서는 비모수 함수를 다른 변수에 대하서는 선형함수를 적합시켜 그들의 가법성을 가정한 것이다. 준모수 회귀모형에 있어서 선형부분의 회귀계수의 추정량에 편의가 발생하고, 여기서는 그 편의에 대한 점근 정규성을 다룬다

  • PDF

선형탐색 터널링을 이용한 정규화 신경망 학습 알고리즘과 옵션가격결정에의 응용 (Regularized Neural Network Training Algorithm Using Line Search Tunneling and It's Application to Option Pricing)

  • 김보현;정규환;최형준;이재욱
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.746-752
    • /
    • 2005
  • 본 논문에서는 다층 퍼셉트론 신경망 학습을 위한 새로운 두 단계 학습방법을 제안하고 이를 옵션 가격결정 모형에 응용하였다. 제안된 신경망 학습 알고리즘의 첫번째 단계는 Levenberg-Marquardt 알고리즘을 이용하여 빠르게 국소최적해를 찾는 것이고 두 번째 단계는 첫 번째 단계에서 찾은 국소최적해가 원하는 수준에 미치지 못할 경우 선형탐색 터널링을 이용해서 더 나은 해를 찾는 것이다. 이 두 단계를 반복적으로 수행함으로써 연결가중치 공간에서 구하고자 하는 해를 빠르고 안정적으로 찾을 수 있다. 현재 옵션가격결정 모형으로 많이 이용되고 있는 Black-Scholes 모형의 문제점을 극복하기 위해서 제안된 신경망 모형을 옵션가격결정 문제에 사용하였다. 이 모형을 KOSPI200 옵션 데이터로 실험한 결과 Black-Scholes 모형에 비해 검증오차를 60% 가량 줄일 수 있었다.

  • PDF

희귀모형의 선형성에 대한 커널붓스트랩검정 (A Bootstrap Test for Linear Relationship by Kernel Smoothing)

  • 백장선;김민수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.95-103
    • /
    • 1998
  • 회귀모형의 선형성을 검정하는 방법으로서 Azzalini와 Bowman은 회귀모형의 오차항이 정규분포를 따른다는 가정하에서 커널회귀추정량을 이용한 유사우도비 검정이라는 비모수적 방법을 제안하였다. 붓스트랩(bootstrap)기법을 도입하여 그들의 검정방법을 변형한 커널붓스트랩검정이라는 새로운 검정법을 제시하고 모의실험을 통해 검정력을 살펴보았다. 제안된 방법은 오차항의 분포가 정규분포가 아닌 경우에도 적용이 가능하였다.

  • PDF

포아송 모형에서의 설명변수 선택문제 - 정규분포 설명변수하에서 - (Subset Selection in the Poisson Models - A Normal Predictors case -)

  • 박종선
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.247-255
    • /
    • 1998
  • 일반선형 모형의 하나인 포아송모형에서 설명변수들을 선택하는 문제를 고려하여 보았다 설명변수들이 정규분포를 따르는 확률변수일 때 반응변수의 조건부 분포를 통하여 모형에 필요한 설명변수의 부분집합을 선택하는 방범을 제시하였다.

  • PDF

포아송 반응을 갖는 로그 선형 회귀 모형에 대한 최우추정량과 모의실험 연구

  • 한정혜;조중재
    • Communications for Statistical Applications and Methods
    • /
    • 제2권1호
    • /
    • pp.22-31
    • /
    • 1995
  • 본 논문에서는 포아송 반응을 갖는 로그 선형 회귀 모형에 붙스트랩 방법을 이용하여, 여러가지 통계적 추론을 위한 유용한 확률적 결과들을 연구.소개하고, 모의실험을 통한 소표본 성질들을 다양하게 제시하고자 한다. 특히 로그 선형 회귀 모형에 대한 최우 추정량 $\hat{\beta_n}$ 및 정보행렬 I(${\beta}_0$)의 추정량들 $I_1(\hat{\beta_n}{\cdot}X)$$I_2(\hat{\beta_n}{\cdot}X)$에 대한 일치성 및 정규성등의 확률적 성질들, 그리고 붙스트랩 방법을 적용한 대표본 성질들과 관련하여 여러가지 모의실험 결과들을 분석.연구하였다.

  • PDF