• Title/Summary/Keyword: 정격

Search Result 699, Processing Time 0.027 seconds

Study on a Limit MPPT Controller for the Modelling of a Wind Power Generator (풍력발전기 모델링 및 리미트 MPPT제어기에 관한 연구)

  • Kang, Ju-Sung;Koh, Kang-Hoon;Choi, Kwang-Ju;Park, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.53-59
    • /
    • 2007
  • Now, the study is activity that the energy market depending on a fossil fuel tend to change different way. In middle of the study compositive use of renewable energy(fuel cell and wind power, solar cell, etc.) is dispersion power system which concern is increasing. But in the case of generation of electric wind power system is changeable to be turbulence and wind and win speed are changeable in several seconds, so making the best of wind energy the MPPT that role in this case is important. In this paper suggest a MPPT which is making a use of information of wind speed and turning speed, windmill, electric power but it is simpler than former way. We could verify that a proposed controller working at the highest point of electric power when wind speed is regular speed and changable speed through the simulation.

Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Chung, Dong-Hwa;Ko, Jae-Sub;Choi, Jung-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. This paper proposes speed control of IPMSM using adaptive learning fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive learning fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive learning fuzzy neural network and artificial neural network.

Electromagnetic Force Calculation of Internet Winding Fault in A Distribution Power Transformer by using A Numerical Program (수치해석을 이용한 배전용 변압기 권선 고장시의 전자력 계산방법 연구)

  • Shin, Pan-Seok;Ha, Jung-Woo;Chung, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.60-67
    • /
    • 2007
  • In this paper, a simulation method of the internal winding fault is proposed to calculate winding current and electromagnetic force in a distribution power transformer by suing FEM program. The model of the transformer is a single phase, 60[Hz], 1[MVA], 22.9[kV]/220[V], cable-type winding. The short-circuit current and electromagnetic force are calculated by FEM(Finite Element Method) program(Flux2D) and the results we verified with theoretical formula and PSPICE program. The simulation results are fairly good agreement with the other verified methods within 5[%] error rate. The turn-to-turn short-circuit current is 500 times of the rated current and the electromagnetic force is about $20{\sim}200times$. The method presented in this study may serve as one of the useful tools in the electromagnetic force analysis of the transformer winding behavior under the short circuit condition for design of the structure.

A Study on the Performance Characteristics of Turbocharged Engine for the Stable Control (터보차저 엔진의 안정적 제어를 위한 성능 특성에 관한 연구)

  • Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.93-101
    • /
    • 2010
  • In this study, the performance characteristics of turbocharged engine is analyzed. The methods of engine performance improvements are suggested not only for full load characteristics of the engine but also for partial load characteristics of the engine, which is more frequently used in actual driving conditions. The compression ratio of the compressor is increased rapidly in a straight line pattern until 1260 engine rpm, and after that it is increased slowly to 2.5 ratio. Also the brake mean effective pressure increased until 1260 engine rpm and decreased rapidly after 1600 engine rpm. The higher the pressure ratio, the better the fuel consumption, air excess ratio and brake mean effective pressure. But those are higher in the rated revolution range than in the mid-low revolution range. The turbocharger is operated in a stable condition from 1260 rpm and its efficiency is low in the low speed range for the reason of its characteristics. The results of this study can be applied in the fundamental control methods of turbocharged engine for stable load and speed.

Dynamic Line Rating Estimation Using Indirect Conductor Method in Overhead Transmission Lines (간접도체 방식을 이용한 가공송전선의 동적송전용량 추정)

  • Kim, Sung-Duck;Lee, Seung-Su;Jang, Tae-In;Kang, Ji-Won;Lee, Dong-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.189-197
    • /
    • 2004
  • The thermal rating of an overhead conductor, which is the maximum allowable current, is generally calculated on the basis of heat balance equation found in IEEE P738 standard. This is given as a function of the weather conditions such as air temperature, wind speed, wind direction, and sun heat. Wind speed among such weather parameters is strongly affected on determining the line rating when it appears very low level. Therefore there may occur inaccuracy since most anemometers used in line rating monitor systems may show low resolutions and stall speed performance. In this paper, we introduce a new methodology for determining the dynamic line rating in overhead transmission lines, without using my anemometer. It was shown that wind speed can be estimated by the temperatures of 2 indirect conductors, and through experimental study, the dynamic line rating obtained by the estimated wind speed was very closely that of weather model.

A Control of Vibrator Using PM Excited Transverse Flux Linear Motor (영구자석 여자 횡축형 선형 전동기(TFLM)를 이용한 가진기 제어)

  • 임태윤;강도현;김종무;김동희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.281-288
    • /
    • 2002
  • This paper has realized a control system of a vibrator using PM excited Transverse Flux Linear Motor(TFLM). Proposed vibrator can supply a vibration force up to 700[N] at rated current, wide operation range of vibration displacement and high frequency for a tested structure. Also, volume of a vibrator system can be decreased because of a high trust force rato(a thrust force per weight=N/Kg). A proposed vibrator instead of a hydraulic vibrator can improve efficiency and have may advantages of maintenance and management. A desired value command is a vibration frequency and displacement in a controller for a vibrator system and a controlled values we a instant position and velocity of a mover Output value of the controller is phase current controlled by PWM converter. In this research, Dynamic simulation has been executed for analysis of a control algorithm and dvnauuc characteristics and is compared with experimental result.

Software Development for the Performance Evaluation and Blade Design of a HACT by BEMT (블레이드요소 운동량 이론에 의한 수평축 조류발전용 터빈 블레이드 설계 및 성능평가 소프트웨어 개발)

  • Mo, Jang-Oh;Kim, Mann-Eung;Hyun, Beom-Soo;Kim, You-Taek;Oh, Cheol;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.96-101
    • /
    • 2011
  • In this study, we have established the design techniques, with which we can design and evaluate performance of blades on a horizontal axis current turbine, by application of blade element momentum theory considering the blade tip's loss model, and finally developed the domestic software(MCT-blade V2.0). We have designed and evaluated performance of blades for the 2MW class by using of the software, and confirmed its calculation results from BEMT by comparing those results from commercial code of ANSYS FLUENT. In a state of rated velocity 2.5m/s, the mechanical power from BEMT is calculated as 2,121kW, which is considered to satisfy the electrical power, but the value from CFD is calculated as 1,901kW, which is considered a little deficient for the target output.

Development of an Ultra-Violet Lamp and a Ballast for Ship's Ballast Water Treatment (선박평형수 처리용 자외선 램프 및 안정기 개발)

  • Cheon, Sang-Gyu;Park, Dae-Won;Kil, Gyung-Suk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.675-681
    • /
    • 2011
  • In this paper, we dealt with the design and fabrication of a medium pressure ultra-violet (UV) lamp and a magnetic ballast which are main components for ballast water treatment systems (BWTS). To acquire an optimal discharge condition of UV lamp, electrical and optical characteristics depending on the argon gas volume and the amount of mercury were experimentally analyzed. Rated voltage, current and power consumption of a prototype lamp were 490 [V], 8.6 [A] and 4.0 [kW], respectively. UV intensity of the lamp was 15 [%] higher than that of an equivalent lamp which is used in a BWTS. The magnetic ballast was designed in a UI core type through theoretical analysis and simulation. The open voltage and the rated power consumption of the ballast were 920 [V] and 8.5 [kVA] respectively. The disinfection efficacy which is carried out in a BWTS equipped with the UV lamp and magnetic ballast was over 99.99 [%], and this satisfy the IMO regulations.

Fluid-structure interaction analysis on a low speed 200 W-class gyromill type vertical axis wind turbine rotor blade (200 W급 자이로밀형 수직축 풍력터빈 로터 블레이드 유체-구조 연성 해석)

  • Cho, Woo-Seok;Choi, Young-Do;Kim, Hyun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.344-350
    • /
    • 2013
  • The purpose of this study is to examine the structural stability of a low speed 200 W class gyromill type vertical axis wind turbine system. For the analysis, a commercial code is adopted. The pressure distribution on the rotor blade surface is examined in detail. In order to perform unidirectional FSI(Fluid-Structure Interaction) analysis, the pressure resulted from CFD analysis has been mapped on the surface of wind turbine as load condition. The rotational speed and gravitational force of wind turbine are also considered. The results of FSI analysis show that the wind turbine reveals an enough structural margin. The maximum structural displacement occurs at trailing edge of blade and the maximum stress occurs at the strut.

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.