• Title/Summary/Keyword: 접합부 전단내력

Search Result 92, Processing Time 0.028 seconds

Experimental Study on Strength of Austentic Stainless Steel (STS 304L) Fillet-Welded Connection with Weld Metal Fracture According to Welding Direction (용접방향에 따른 오스트나이트계 스테인리스강(STS304L) 용착금속파단 용접접합부의 내력에 관한 실험적 연구)

  • Kim, Tae Soo;Lee, Hoochang;Hwang, Bokyung;Cho, Taejun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Austenitic stainless steels have excellent corrosion resistance, durability and fire resistance. Especially, since STS304L among austenitic types is a low-carbon variation of STS304 and has excellent intergranular corrosion resistance, it can often be used under the welded condition without heat treatment after field welding. This paper investigated ultimate behaviors such as ultimate strength and weld metal fracture mechanism of STS304L fillet-welded connections with TIG(tungsten inert gas) welding through test results. Main variables of specimens are weld length and welding direction against loading. Fracture of specimens are classified into three modes(tensile fracture, shear fracture and block shear fracture). Ultimate strengths were compared according to the welding direction and weld length and TFW series with transverse fillet weld had the highest strength compared with other types(LFW series with longitudinal fillet weld and FW series with all round weld). It is known that current design specifications such as KBC 2016 and AISC2010 underestimated the strength of TFW and LFW specimens and provided unconservative estimates for FW specimens. Finally, strength equations were proposed considering material properties of STS 304L material.

Development of Wide Connection Method for Vertical Joints of Precast Concrete Walls (프리캐스트 콘크리트 벽체 수직접합부의 광폭형 연결방식 개발)

  • Choi, Eun-Gyu;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.549-556
    • /
    • 2009
  • This research analyzed the structural efficiency and application by improving the 100 mm width vertical joint to 150 mm and developing three connection methods to reduce the difficulty in assembling and handling PC walls. Moreover, nonlinear finite analysis was used for analyzing. From the analysis results, when double width connection was applied, the PC wall showed larger load capacity and ductility due to the steel bar sharing loads efficiently. Moreover, as the dimension of loops and the number of bars increased, the maximum load capacity increased as well. Also, among the double width connections, the largest capacity showed in the order of welding, ring and C type loop. However, in case of welding type loop connection, the ring type loop is more stable due to changes in different site conditions. Therefore, thorough quality control of welding is necessary.

An Experimental Study on Structural Behaviors of Double Shear Bolted Connections Fabricated with Ferritic Stainless Steel (STS430) (페라이트계 스테인리스강(STS430) 이면전단 볼트접합부의 구조거동에 관한 실험적 연구)

  • Kim, Tae Soo;Kim, Min Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.463-474
    • /
    • 2013
  • Many experimental and numerical researches for thin-walled carbon steel and austenitic stainless steel single shear bolted connections have been conducted and the modified design equations of ultimate strength were proposed. In this study, the tests of double shear bolted connections with bolt arrangements ($2{\times}1$, $2{\times}2$) and end distance parallel to the loading direction as main variables were performed. Specimens were planed with a constant dimension of edge distance perpendicular to the loading direction, bolt diameter, pitch and gauge like single shear bolted connections. The test results such as ultimate strength and fracture mode were compared with those of current design standards. Furthermore, modified block shear equations for double shear bolted connections were suggested.

Evaluation of The Lateral Strength Performance of Rigid Wooden Portal Frame (강절형 목질 문형라멘프레임의 수평내력성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.535-543
    • /
    • 2017
  • For column-beam gussets of wooden structures, slit-processed members inserted with a steel plate are used in general. In this study, a rigid portal frame bonded with a joint was fabricated and a semi-rigid portal frame was fabricated by making a wooden gusset, a replacement for steel plate, of which a half was integrated into the column member and the other half was joined with the beam member by drift-pins. The lateral strength performance of the wooden portal frame was compared with that of the steel plate-inserted joint portal frame. The lateral strength performance was evaluated through a perfect elasto-plasticity model analysis, sectional stiffness change rate, and short-term permissible shear strength. As a result of the experiment, the maximum strength of the rigid portal frame was lower than that of the steel plate-inserted joint portal frame. The yield strength and ultimate strength were calculated as 0.58 and 0.48, respectively, but the measurements of initial stiffness and cumulative ductility improved by 1.35 and 1.1, respectively. As a result of the perfect elasto-plasticity model analysis of the semi-rigid portal frame, the maximum strength was lower than that of the rigid portal frame, but the toughness after failure was excellent. Thus, the ultimate strength was higher by 1.05~1.07. The steel plate-inserted portal frame showed rapid decrease in stiffness with the progress of repeated tests, but the stiffness of the portal frames with a wooden joint decreased slowly.

The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure (혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성)

  • Lee, Seung Jo;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.445-455
    • /
    • 2000
  • This study proposed to beam-column joint model consisting of different type structural member to develop new structural system in the structural viewpoint as to a method to overcome various problem according to change of construction environment. This study promoted rigidity and capacity to stiffen reinforced concrete for steel structure end to increase rigidity of long spaned steel beam, and welt to steel flange to anchor U-shaped main bar of SRC structure end to easy stress flow between the different type structure. Through the series of experiments, proposed to possibility of this joint model, and investigated joint rigidity and capacity.

  • PDF

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

An Experimental Study on Ultimate Behavior of Thin-walled Carbon Steel Bolted Connections with Varying Plate Thickness and End Distance (평판두께와 연단거리를 변수로 갖는 박판탄소강 볼트접합부의 종국거동에 관한 실험적 연구)

  • Lee, Yong Taeg;Kim, Tae Soo;Jeong, Ha Young;Kim, Seung Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.527-536
    • /
    • 2009
  • The purpose of this experimental study was to investigate the block shear fracture behavior and curling effect on a single shear-bolted connection in thin-walled carbon steel fabricated with four bolts. The specimens that fail by block shear were planned to have a constant dimension of the edge distance perpendicular to the loading direction, bolt diameter, pitch, and gage. The main variables of the specimens were plate thickness and end distance parallel to the loading direction. A monotonic tensile test was carried out for the bolted connections, and the ultimate behaviors, such as the fracture shape, ultimate strength, and curling, were compared with those that had been predicted using the current design specifications. The conditions of curling occurrence in terms of plate thickness and end distance were also investigated, and the strength reduction due to curling was considered.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Application of Artificial Neural Networks to Predict Ultimate Shear Capacity of PC Vertical Joints (PC 수직 접합부의 극한 전단 내력 예측에 대한 인공 신경 회로망의 적용)

  • 김택완;이승창;이병해
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-101
    • /
    • 1996
  • An artificial neural network is a computational model that mimics the biological system of the brain and it consists of a number of interconnected processing units where it can reasonably infer by them. Because the neural network is particularly useful for evaluating systems with a multitude of nonlinear variables, it can be used in experimental results predictions, in structural planning and in optimum design of structures. This paper describes the basic theory related to the neural networks and discusses the applicability of neural networks to predict the ultimate shear capacity of the precast concrete vertical joints by comparing the neural networks with a conventional method such as regression.

  • PDF

Tenon Reinforcement Technique on Tradition Wooden Structures Using Spiral Hardware (나선형 철물을 사용한 전통 목구조의 장부 보강기법)

  • Yu, Hye Ran;Kwon, Ki Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • The failure of tenon in a traditional wood-framed structure may collapse of the entire structure. This study evaluates the strength and stiffness of tenon joints between the beams and pillars through experimental study and suggests reinforcing method of the tenon joint without dismantling the main structures. The main experimental parameters are the number, distance, shape, and inserting depth of spiral-shaped reinforcing steels. As the thickness of the tenon in beams increases, the strength and the initial shear stiffness of the joint increases and, however, the tenons in pillar becomes weaker, resulting in the safety problem of the structure. It is recommended that three spiral-shaped reinforcing steels be placed in the central parts of the tenon to effectively improve the strength and the shear stiffness of the joint.