• Title/Summary/Keyword: 접촉 역학

Search Result 325, Processing Time 0.026 seconds

Mechanical Characteristics of High Tension Bolted Joint Connections using Shear Ring (전단링을 사용한 고장력볼트 이음부의 역학적 특성에 관한 연구)

  • Lee, Seung Yong;Park, Young Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.327-338
    • /
    • 2006
  • Friction type high tension bolted joints is one of the most common steel structure connections and requires significant concerns on axial force of the bolts. However, its high shear capacity is not appropriately considered in design and hence the number of bolts is over-designed than actually required. It is primarily due to a slip-load-based design method. This study, therefore, suggests a new technology of connection using a shear ring, which may reduce the shortcomings from the friction-typed high tension bolted joints and maximize the advantages from the bearing-typed joints. Experimental and numerical studies were performed to compare the capacity of the suggested method with traditional high tension bolted joints. From the results, it is known that the suggested connections has higher bearing capacity than friction-typed high tension bolted joints due to the higher shear resistance from the ring. For further study, it may be necessary to investigate on design parameters including the depth of shear ring, for increased connection capacity.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Physical Properties Related to Metamorphic Grade of the Hornfels Exposed Around Mt. Palgong (팔공산 주변 혼펠스의 변성도에 따른 물리적 특성)

  • Shin, Kuk-Jin;Oh, Je-Heon;Jung, Yong-Wook;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.25-35
    • /
    • 2014
  • The sedimentary rocks exposed around Mt. Palgong were subjected to metamorphism due to a granitic magma intrusion at late Cretaceous, and they eventually metamorphosed to hornfels by the action of both hydrothermal solution and high temperature supplied from the magma. The hornfels zone around the granite body ranges from 2.0 to 3.5 km in width but the boundary between hornfels and sedimentary rocks is not obviously defined because the metamorphic grade gradually decreases with distance from the granite boundary. A series of laboratory tests on 350 core specimens made by 35 fresh rock blocks obtained from 5 selected locations around Mt. Palgong are performed to verify the variation of physical and mechanical properties related to metamorphic grade of the rock. Water content and absorption ratio of the hornfels linearly increase with distance to the granite boundary whereas dry unit weight, p-wave velocity, point load strength, and slake durability index linearly decrease with the distance. These results imply that the metamorphic grade of the hornfels also linearly decrease with the distance to granite boundary. Empirical equations for the variation of properties with the distance to granite boundary and relationship between a property and another one are deduced by regression analyses. And a criteria for classification of hornfels exposed in the study area based on the P-wave velocity and point load strength is proposed.

A Numerical Study on Mass Transfer and Methanol Conversion Efficiency According to Porosity and Temperature Change of Curved Channel Methanol-Steam Reformer (곡유로 메탄올-수증기 개질기 공극률 및 온도 변화에 따른 물질 전달 및 메탄올 전환율에 대한 수치해석적 연구)

  • Seong, Hong Seok;Lee, Chung Ho;Suh, Jeong Se
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.745-753
    • /
    • 2016
  • Micro methanol-steam reformer for fuel cell can effectively produce hydrogen as reforming response to steam takes place in low temperature (less than $250^{\circ}C$). This study conducted numerical research on this reformer. First, study set wall temperature of the reformer at 100, 140, 180 and $220^{\circ}C$ while methanol conversion efficiency was set in 0, 0.072, 3.83 and 46.51% respectively. Then, porosity of catalyst was set in 0.1, 0.35, 0.6 and 0.85 and although there was no significant difference in methanol conversion efficiency, values of pressure drop were 4645.97, 59.50, 5.12 and 0.45 kPa respectively. This study verified that methanol-steam reformer rarely responds under the temperature of $180^{\circ}C$ and porosity does not have much effect on methanol conversion efficiency if the fluid flowing through reformer lowers activation energy by sufficiently contacting reformer.

A analysis of friction relation between tennis outsole and tennis playing surfaces (테니스화겉창과 테니스 스포츠바닥재간의 마찰관계상관 분석)

  • Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.361-380
    • /
    • 2002
  • The purposes of this study were to a analysis of friction relation between tennis outsole and tennis playing surfaces. Tennis footwear is an important component of tennis game equipment. It can support or damage players performance and comfort. Most importantly athletic shoes protect the foot preventing abrasions and injuries. Footwear stability in court sports like tennis is incredibly important since it is estimated that as many as 45% of all lower extremity injuries occur in the foot and ankle. The friction force is the force exerted by a surface as an object moves across it or makes an effort to move across it. The friction force opposes the motion of the object. Friction results when two surfaces are pressed together closely, causing attractive intermolecular forces between the molecules of the two different surfaces. The outsole provides traction and reduces wear on the midsole. Today's outsoles address sport specific movements (running versus pivoting) and playing surface types. Different areas of the outsole are designed for the distinct frictional needs of specific movements. Traction created by the friction between the outsole and the surface allows the shoe to grip the surface. As surfaces, conditions and player motion change, traction may need to vary. An athletic shoe needs to grip well when running but not when pivoting. Laboratory tests have demonstrated force reductions compared to impact on concrete. There is a correlation between pain, injury and surface hardness. These are a variety of traction patterns on the soles of athletic shoes. Traction like any other shoe characteristic must be commensurate and balanced with the sport. The equal and opposite force does not necessarily travel back up your leg. The surface itself absorbs a portion of the force converting it to other forms of energy. Subsequently, tennis court surfaces are rated not only for pace but also for the percentage of force reduction.

Comparisons of Putting Stroke Characteristics between Expert and Novice Golfers(II) (숙련자와 초보자의 퍼팅 스트로크 특성비교(II))

  • Park, Jin;Lee, Young-Sup;Ahn, Byoung-Hwa
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.207-214
    • /
    • 2002
  • The purpose of this study was to examine the putter head movement during the putting strokes. Highly skilled 5 golfers(less than 3 handicaps) and 5 novice golfers(having no golf experience) participated in this study. A target distance was 3 m. Movements of the putter head were recorded at 60 Hz with two video cameras(1/500 shutter speed). The results showed that the angle of the clubface of expert golfers was almost 1 degree, but the novice golfers were more than 6 degrees. Expert golfers moved their hands faster than the head movement, therefore the clubface was not opened during impact. However, the novice golfers moved their hands slower than the head movement, therefore the clubface was opened during impact. The ratio of input and output angles of total movement was 1:3-4, however, the ratio of input and output angles of impact zone was 1:2. The angle of normal vector of expert golfers was less than the angle of normal vector of novice golfers.

Comparisons of Putting Stroke Characteristics between Expert and Novice Golfers(I) (숙련자와 초보자의 퍼팅 스트로크 특성비교(I))

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.197-206
    • /
    • 2002
  • The purpose of this study was to investigate the putter head movement during the putting strokes. Highly skilled 5 golfers(less than 3 handicaps) and 5 novice golfers(having no golf experience) participated in this study. A target distance was 3 m. Movements of the putter head were recorded at 60 Hz with two video cameras. The results showed that the novice golfers moved the club significantly longer than the expert golfers(p<.0001). Accoring to a movement time, novice golfers moved their club significantly faster than the expert golfers(p<0.001). Novice golfers could not control the club head effectively, and could not hit the ball correctly. Based on the impact zone movement, sweet spot of novice golfers moved faster(along the line of putt), higher(along the vertical line), and wider(along the side to side line) than that of expert golfers.

3D Finite Element Analysis of High Tension Bolted Joints (고장력 볼트 이음부의 3차원 유한요소 해석)

  • Shim, Jae Soo;Kim, Chun Ho;Kim, Dong Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.407-414
    • /
    • 2004
  • Bridges in common use are expected to have more varieties of load in their connected members and bolts than in construction. Faults in connection members or bolts occur so often according to the time flow. One of the purposes of this study is to find out the behavior and structural features of high-tension bolted joints with faults that are very difficult and cost much to find out through experimentation with finite element analysis. Another purpose of this study is to provide sufficient data, estimated experimental results, and the scheme of the test plate for an economical experimental study in the future. Surveys of bridges with a variety of faults and statistical classifications of their faults were performed, as was a finite element analysis of the internal stress and the sliding behavior of standard and defective bridge models. The finite element analysis of the internal stress was performed according to the interval of the bolt, the thickness of the plate, the distance of the edge, the diameter of the bolt, and the expansion of the construction. Furthermore, the analysis explained the sliding behavior of high-tension bolt joints and showed the geometric non-linear against the large deformation, and the boundary non-linear against the non-linear in the contact surface, including the material non-linear, to best explain the exceeding of the yield stress by sliding. A normally bolted high-tension bolt joint and deduction of bolt tension were also analyzed with the finite element analysis of bridge-sliding behavior.

Study on the Standardization of a Surveillance Culture Laboratory in Infection Control Fields (감염관리 분야에서 감시배양검사의 표준화 연구)

  • Park, Chang-Eun;Jeong, Na-Yeon;Yang, Min-Ji;Kim, Han-Wool;Joo, Sei-Ick;Kim, Keon-Han;Seong, Hee-Kyung;Hwang, Yu-Yean;Lim, Hyun-Mi;Son, Jae-Cheol;Yoon, Sun-Han;Yoon, Nam-Seob;Jang, In-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.359-369
    • /
    • 2018
  • An essential measure to prevent healthcare-associated infections (HAI) is to develop a consistent system of surveillance, thereby promoting a reliable situation diagnosis to perform efficient control for the problem. Patient-to-patient transmission of pathogens within the hospital plays a substantial role in the epidemiology of HAIs. Contamination of healthcare environments commonly occurs, including facilities surfaces (e.g., bed rails, bedside tables), drinking water, cooling tower water, endoscopic instruments, food, airborne, endotoxin test, sterile test and medical equipment, with pathogenic organisms. In addition, epidemiological analysis is performed by multi locus sequence tying, pulsed-field gel electrophoresis for active surveillance. Therefore, an environmental surveillance culture test for prevention improves patient safety and blocks infection agents. Effective infection control and increased safety are possible by controlling the national infection control system. In conclusion, this study contributes to an effective infection control system through the standardization of active surveillance culture laboratory and secure expertise as infection control specialist. The primary objective of the standardization is to improve the safety of the nation's healthcare system by reducing the rates of HAIs.