• Title/Summary/Keyword: 접촉 역학

Search Result 325, Processing Time 0.029 seconds

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Rotordynamic Analysis of a High Thrust Liquid Rocket Engine Turbopump (고추력 액체 로켓 엔진용 터보펌프의 회전체동역학 해석)

  • Jeon, Seong-Min;Kwak, Hyun-Duck;Yoon, Suk-Hwan;Kim, Jin-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.688-694
    • /
    • 2008
  • A rotordynamic analysis is performed for a high thrust class liquid rocket engine turbopump considering the dynamic characteristics of ball bearings and pump noncontact seals. Complex eigenvalue problems are solved to predict the rotating natural frequencies and damping ratios as a function of rotating speeds. Synchronous rotor mass unbalance response and time transient response analyses are also performed to figure out the rotor critical speed and the onset speed of instability. From the numerical analysis, it is found that the rear bearing stiffness is most important parameter for the critical speed and instability because the 1st mode is turbine side shaft bending mode. The pump seal effect on the critical speed is enlarged as the rear bearing stiffness decreases and the front bearing stiffness increases.

${\ll}$동의보감(東醫寶鑑).내경편(內景篇)${\gg}$의 도교사상(道敎思想) 고찰

  • Seong Ho-Jun
    • Journal of Korean Medical classics
    • /
    • v.13 no.1
    • /
    • pp.253-268
    • /
    • 2000
  • 1613년허준소간적(年許浚所刊的)${\ll}$동의보감(東醫寶鑑)${\gg}$불지시의사학종사자적연구과제(不只是醫史學從事者的硏究課題). 인위(因爲)${\ll}$동의보감(東醫寶鑑)${\gg}$병불시단순적의서(?不是單純的醫書), 이차서구유료도가내단사상급역학사상등철학사고지고(而此書具有了道家內丹思想及易學思想等哲學思考之故). ${\ll}$동의보감(東醫寶鑑)${\gg}$소출간적나시대수연성리학점굴료수위(所出刊的那時代雖然性理學占掘了首位), 단시차서소구적도교색채비임하의서갱농후(但是此書所具的道敎色彩比任何醫書更濃厚). 내경편적체계시피(內景篇的體系是被)${\ll}$황정경(黃庭經)${\gg}$영향적(影響的). 작위수련서(作爲修鍊書), ${\ll}$황정경(黃庭經)${\gg}$시도교주요경전지일是道敎主要經典之一). 비서인위인체즉시신적세계(比書認爲人體卽是神的世界), 인체적각기관우시저사신소주적안댁(人體的各器官又是這些神所住的安宅). 내경편이차(內景篇以此)${\ll}$황정경(黃庭經)${\gg}$위자爲資), 구성료기본체계급기주요내용(構成了基本體系及其主要內容). 우기시(尤其是), 내경편접수도가역학사상이설명천인상응(內景篇接受道家易學思想而說明天人相應). 즉(卽), 내경편접수(內景篇接受)${\ll}$참동계(參同契)${\gg}$주급(注及)${\ll}$회남자(淮南子)${\gg}$등도교문헌리소재적(等道敎文獻裏所載的)'발생론(發生論)', 인이음양오행적정기래해설만물여인지상응관계(因而陰陽五行的精氣來解說萬物與人之相應關係). 차정기계승위내단사상적정기신론(此精氣繼承爲內丹思想的精氣神論). 정여기(精與氣), 기여신(氣與神), 신여정시재우불단지호상접촉호상융화적관계상(神與精是在于不斷地互相接觸互相融化的關係上). 필자인위내경편이정기신론위주(筆者認爲內景篇以精氣神論爲主), 장의서인진료도교수련적경계(將醫書引進了道敎修鍊的境界). 단시(但是), 본론문불지간분석연구내경편소인적(本論文不至干分析硏究內景篇所引的)${\ll}$황제내경(黃帝內經)${\gg}$등의서포함적도교관(等醫書包含的道敎觀). 요시리해(要是理解)${\ll}$동의보감(東醫寶鑑)${\gg}$소인의서적사상기원급기내용(所引醫書的思想起源及其內容), 대연구내경편급(對硏究內景篇及)${\ll}$동의보감(東醫寶鑑)${\gg}$전편적철학성취유흔대적방조(全篇的哲學性就有?大的幇助). 차시필자요계속요연구적과제파료(此是筆者要繼續要硏究的課題擺了).

  • PDF

Biomechanical Application of Plantar Pressure Distribution for Walking on Uneven Rocky Surface (Uneven Rocky Surface 이동 시 압력분포를 적용한 운동역학적 활용)

  • Chung, Yong-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.387-397
    • /
    • 2009
  • Physical activity has been increased with increased leasure time. Specifically, due to our mountainous geographical benefits, people actively participate in hiking and climbing as regular daily activities. Thus, more stable and comfortable hiking boots are required to walk on uneven and sloped rocky surface for a long period of time. 5 male subjects were recruited for testing planter pressure patterns of four different conditions(barefoot, classic hiking boot, stiffness 60 and stiffness 65). Tested hiking boots(stiffness 60 and stiffness 65) consists of the multiple pieces of outsoles as they are designed for a better shock absorption. In the results, some positive aspects of stiffness 60 and stiffness 65 such as wide contact area and powerful propulsive patterns at take off was observed compared to the classic hiking boots. Therefore, biomechanical development of hiking related clothes and footwear as well as equipment would be beneficial for people who enjoy hiking to maximize their quality of activities.

Dynamic Simulation of Rail Strain and Vibration Changes According to Track Irregularity (선로 궤도틀림에 따른 레일 변형률과 진동 변화 동역학 시뮬레이션)

  • Kim, Ju Won;Kim, Yong Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • The method of utilizing the strain and vibration values of rails is primarily used to diagnose the condition of wheels and railroad facilities. The dynamic load is measured under the assumption that the strain of the rail and the load of the railroad vehicle are proportional. Wheel condition is measured under the assumption that the magnitude of the defect and the magnitude of the rail vibration are proportional. However, environmental factors affecting the strain and vibration of the rail such as vehicle speed, wheel load, climate, and track conditions are not reflected, many errors occur depending on the measurement conditions. In this study, the effect of track distortion, which is a major indicator of the track condition among the environmental factors that affect the strain and vibration of the rail, on the strain and vibration of the rail, was examined through dynamic simulation. As a measure to reduce the measurement deviation, the effect of securing additional measurement points was analyzed.

Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation (탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석)

  • Dongchan Seo;Kyung-Heui Kim;Dohoon Lee;Bora Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

Effects of drilling process in stability of micro-implants used for the orthodontic anchorage (고정원을 위한 micro-implant 매식시 drilling 유무에 따른 안정성에 관한 연구)

  • Chang, Young-Il;Kim, Jong-Wan
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.107-115
    • /
    • 2002
  • The aim of this study was to investigate experimentally the mechanical and histological effect of drilling process on the stability of micro-implant used for the orthodontic anchorage. For this purpose, 32 micro-implants(Osas$^{(R)}$, Epoch medical, ${\phi}$1.6 mm) were inserted into maxilla, mandible and palate in two beagle dogs. 16 micro-implants(8 per dog) were inserted after drilling with pilot drilling bur (drill method group). 16 micro-implants(8 per dog) were inserted without drilling (drill-free method group). After 1 week, micro-implants were loaded by means of Ni-Ti coil spring (Ni-Ti springs-extension$^{(R)}$, Ormco) with 200-300 gm force. Following 12 weeks, the micro-implants and the surrounding bone were removed. Before sacrifice, the mobilities were tested with Periotest$^{(R)}$(Siemens). Undecalcified serial sections with the long axis were made and the histologic evaluations were done. The results of this study were as follow ; 1. The osseointegration was found in both of drill-free method group and drill method group 2. Two of drill method group and one of drill-free method group in 32 micro-implants were lost after loading. 3. The mobilities of drill-free method group were less than drill method group 4. The bone contact on surface of micro-implants in drill-free method group was more than drill method group but there was no significant difference between groups. 5. The bone density in threads of micro-implants in drill-free method group was more than drill method group and there was significant difference between groups. These results suggest that drill-free method in insertion of micro-implants is superior to drill method on the stabilities, bone remodeling and osseointegrations under early loading.

전해질 용액의 농도가 단결정 Si의 마찰거동에 미치는 영향

  • 임대순
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.06a
    • /
    • pp.60-62
    • /
    • 1991
  • 세라믹스 및 Si과 같은 반도체의 사용을 위해서는 drilling, cutting, polishing 등의 과정이 필요하고 이와 같은 기계적인 가공에는 막대한 시간과 에너지가 필요하게 된다. 그리고 가공중에 생긴 결함은 최종제품의 전기적, 화학적, 기계적 성질들에 영향을 주기 때문에 이들 재료의 손상부위 분석을 포함한 tribological거동의 이해는 경제적인 이유뿐만 아니라 기술적인 면에서도 중요하다. 이러한 이유에서 비금속표면성질에 미치는 용액의 영향에 대한 연구는 학문적 관심뿐만 아니라 실용적인 관심을 끌고 있다. Rebinder에 의해 액체와 접촉하고 있는 고체의 역학적 성질의 변화에 대한 보고가 있은 이래 소위 chemomechanical effect에 대한 실험결과가 많이 보고되었다. 본 연구에서는 단결정 Si기판율 diamond indenter에 의해 전해질 용액에서 scratch함으로써 Si의 cutting 및 polishing 등에 미치는 용액의 효과를 규명하고자 하였다.

  • PDF