• Title/Summary/Keyword: 접촉 센서

Search Result 572, Processing Time 0.029 seconds

A proposal of a Non-contact Interaction Behavior Design Model for the Immersion of Culture Contents based on Non-linear Storytelling (비선형 스토리텔링 전시형 문화콘텐츠 몰입을 위한 비접촉 인터랙션 행위 디자인 모델 제안)

  • So Jin Kim;Yeon Su Seol
    • Smart Media Journal
    • /
    • v.12 no.1
    • /
    • pp.77-91
    • /
    • 2023
  • Interaction methods and technologies for mutual exploration based on user behavior are evolving variously. Especially, in recent years, with the development of a wide range of sensors, they have developed from contact to non-contact methods. However, developers' senseless definitions of the interaction methods have made the exploration process quite complicated, which rather creates the hassle of users needing to learn the interaction guide defined by the developers before experiencing the exhibition contents. In this context, in order to make visitors smoothly communicate with exhibition contents, a preliminary study on easy interaction for users of various ages is needed, and in particular, research on improving the usability of user interaction is also essential when developing non-contact exhibition contents. So, in this study, a method to reduce the confusion between developers and users was sought by researching non-contact interaction that could be universally interacted with in the field of exhibition contents and proposing behavior designs. First, based on the narrative structure of cultural resources, existing studies were reviewed and the points of interactions as cultural contents were derived. Then the most efficient search process was selected among non-contact behaviors based on hand gestures that allow users to naturally guess and learn interaction methods. Furthermore, on the basis of the meaning of non-linear narrative-based interaction and the analysis results of spatial behavior elements, affordance behavior with high learning effect and efficiency was derived. Through this research process, an action that helps users to understand non-contact interaction naturally in the process of exploring exhibition-type cultural contents and to utilize non-contact interaction in the process of immersion in exhibition contents is proposed as a final model.

A Study of Noncontact Heartbeat and Respiration Detection Using the Doppler Radar (도플러 레이더를 이용한 비접촉 방식의 심박 및 호흡 검출에 관한 연구)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a 2.4 GHz doppler radar system consisting of a doppler radar sensor and a baseband module were designed to detect heart beat and respiration signal without direct skin contact. The doppler radar system emits RF signal of 2.4 GHz toward human chest, and then detects phase modulation of the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from I/Q channels of the doppler radar system are applied to the pre-processing circuit, the amplification circuit, and the offset circuit of the baseband module. The designed system was tested on mouse, rabbit and mankind, which have different range of heart rates and respiration signals, to evaluate detection accuracy of the system. ECG acquisition system and respiration transducer were used to generate the reference signal. In our experiments, a performance of detection were found to be high in the case that the subject stays still. In this paper, we confirmed that non-contact heart beat and respiration detection using the doppler radar has the possibility and limitation according to distance, cardiopulmonary activities, range of heart rates and respiration.

Design Optimization of Fuel Sensor Location in Aircraft Conformal Fuel Tank (항공기 보조연료탱크의 연료량 측정센서 위치 최적설계)

  • Jung, Kyusung;Yang, Junmo;Lee, Sangchul;Yi, Yongsik;Lee, Jaewook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.332-337
    • /
    • 2018
  • This paper presents the design optimization of fuel sensor location used to measure remained fuel amount in aircraft conformal fuel tank. The conformal fuel tank is utilized to expand the mission range in airplane, and the sensor location is a critical design variable determining the measurement accuracy. In this work, the sensor location is optimized to minimize unmeasurable fuel amount due to non-contact between fuel and sensor. The simplified model is prepared from the conformal fuel tank CATIA model, and the unmeasurable fuel amount is calculated. Then, the optimization is performed using MATLAB optimization solver. The optimized sensor location is validated by comparing with the location obtained using parametric study.

The Mobile Health-Care Garment System for Measurement of Cardiorespiratory Signal (ECG와 호흡 측정이 가능한 모바일 헬스케어 의류 시스템)

  • Kim, Jeong-Do;Kim, Kap-Jin;Chung, Gi-Su;Lee, Jung-Hwan;Ahn, Jin-Ho;Lee, Sang-Goog
    • The KIPS Transactions:PartA
    • /
    • v.17A no.3
    • /
    • pp.145-152
    • /
    • 2010
  • Most wearable system for mobile healthcare applications consists of three parts. The first part is the sensing elements based on bio-signal, the second is the circuit module for control, data acquisition and wireless communication and control and the third is garment with a built-in electrodes and circuits. The existing healthcare garment systems have to find a solution to signal-wire and uncomfortable and inappropriate electrode to long-term attachment. Even if the wireless communication is used for healthcare garment system, the interface between sensors and circuits have to use wires. To solve these problems, this paper use electrode using PEDOT coated PVDF nanoweb for ECG signal and PVDF film sensor for respiratory signal. And, we constructed garment network using digital yarn of 10um, and transmitted ECG and respiratory signal to mobile phone through the integrated circuit with bluetooth called station To evaluate feasibility of the proposed mobile healthcare garment system, we experimented with transmission and measurement of ECG and respiratory signal using nanoweb electrode and digital yarn. We got a successful result without noise and attenuation.

A Study on the Tool Vibration Measurement Using the Fiber Optic Interferometric Sensor in Lathe Cutting Process (광섬유 간섭계 센서를 이용한 선삭가공 공구진동 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.32 no.2
    • /
    • pp.171-187
    • /
    • 2007
  • The purpose of this study is to measure the lathe tool vibration and verify its usefulness using the fiber optic interferometeric sensor instead of using common accelerometer. To compare two vibration signals a Fabry-Perot fiber optic sensor(FOS) is directly attached to the left-side surface of the lathe tool and an accelerometer is attached near to the fiber optic sensor. Measurement signals from the FOS and theoretical results of receptance simulation are compared. When the amplitude of tool vibration increased the frequency shift phenomena was occurred. This means that mass effect occurred and vibration spectrum moved to the low frequency region. Generally this results is agreement to the regenerative chatter. The chatter frequency is not same as the natural frequency of the tool itself. The FOS can also applied to laboratory experiments for students. This experimental technique is perhaps the first attempts because of directly attachment technique. Therefore, suggested Fabry-Perot fiber optic sensor can be used to monitoring the tool wear and vibration.

High-Accuracy Current Sensing Technique Based on Magnetic Sensors for Three-Phase Switchboards (삼상 배전반에서 자기센서 기반의 고정밀 전류 측정 기법)

  • Lee, Sungho;Kim, Taemin;Kim, Namsu;Ahn, Youngho;Lee, Sungchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.993-998
    • /
    • 2017
  • In this paper, a high-accuracy current sensing technique for three-phase current paths in an electrical switchboard is proposed. Conventional open-style current sensors using magnetic sensors show inaccurate sensing performance with more than 10% error due to undesired magnetic field interference from neighboring paths. To increase accuracy, large and expensive current transformers with large permeabilities have been used, which increased the cost and size. The proposed technique can improve the measured magnetic field by the calculation of magnetic interference effect from neighboring current paths. The relationship between neighboring magnetic fields and the desired magnetic field is theoretically analyzed in a general case. The proposed technique is verified using magnetic field simulations in a three-phase busbar environment.

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.

Sol-gel 방식을 통한 Al2O3 게이트 절연체를 갖는 그래핀 Field Effect Transistor 센서에 관한 연구

  • Bae, Tae-Eon;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.1-431.1
    • /
    • 2014
  • 최근, 높은 캐리어 이동도와 유연성, 투명성의 우수한 전기적 기계적 특성을 갖는 그래핀에 관한 연구가 활발해지고 있으며 이를 기반으로 한 그래핀 field effect transistor (FET) 센서 응용 또한 관심이 커지고 있다. 작은 소자 크기, 견고한 구조, 빠른 응답속도와 CMOS 공정과의 호환성이 좋은 FET 기반의 센서의 감지 특성은 주로 전해질과 직접 접촉하는 게이트 절연체의 고유 특성에 의해 결정된다. 이러한 게이트 절연체는 일반적으로 스퍼터링, atomic layer deposition (ALD), plasma enhanced chemical vapor deposition (PECVD) 등의 진공 방법에 의해 형성되며, 이 공정 기술은 고가의 장비, 긴 공정 시간과 높은 제조비용이 요구된다. 더욱이, 위의 방식들은 소자 제작 동안에 플라즈마 발생 또는 열처리를 필요로 하게 되며 이는 그래핀 기반의 소자의 제작에 있어 큰 손상을 발생시키게 된다. 이러한 이유로 인해, 그래핀 FET 센서의 게이트 절연체의 형성에 있어 진공 증착 기술은 적절하지 않다. 본 연구에서는, 진공 증착 기술의 문제점을 극복하기 위해 sol-gel 방식을 통한 Al2O3 게이트 절연체를 갖는 그래핀 FET 센서를 제작하였다. Sol-gel 방식은 적은 비용, 공정의 단순화, 높은 처리량 뿐 아니라 소자의 대면적화 제작에 유리하다는 장점을 가지며, 또한 게이트 절연체를 증착함에 있어서 플라즈마가 발생하지 않기 때문에 그래핀 FET 제작에 쉽게 적용될 수 있다. 특히, 게이트 절연체 중 Al2O3은 우수한 화학적 안정성과 감지 특성으로 인해 본 실험에 사용하였다. 결론적으로, sol-gel 방식을 통한 Al2O3 게이트 절연체를 갖는 그래핀 FET 센서는 우수한 전기적 특성과 감지 특성 측면에서 매우 전망적이다.

  • PDF

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.