• Title/Summary/Keyword: 접촉식센서

Search Result 243, Processing Time 0.023 seconds

Design Optimization of Fuel Sensor Location in Aircraft Conformal Fuel Tank (항공기 보조연료탱크의 연료량 측정센서 위치 최적설계)

  • Jung, Kyusung;Yang, Junmo;Lee, Sangchul;Yi, Yongsik;Lee, Jaewook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.332-337
    • /
    • 2018
  • This paper presents the design optimization of fuel sensor location used to measure remained fuel amount in aircraft conformal fuel tank. The conformal fuel tank is utilized to expand the mission range in airplane, and the sensor location is a critical design variable determining the measurement accuracy. In this work, the sensor location is optimized to minimize unmeasurable fuel amount due to non-contact between fuel and sensor. The simplified model is prepared from the conformal fuel tank CATIA model, and the unmeasurable fuel amount is calculated. Then, the optimization is performed using MATLAB optimization solver. The optimized sensor location is validated by comparing with the location obtained using parametric study.

A Study on the Tool Vibration Measurement Using the Fiber Optic Interferometric Sensor in Lathe Cutting Process (광섬유 간섭계 센서를 이용한 선삭가공 공구진동 측정 연구)

  • Lee, Jongkil
    • 대한공업교육학회지
    • /
    • v.32 no.2
    • /
    • pp.171-187
    • /
    • 2007
  • The purpose of this study is to measure the lathe tool vibration and verify its usefulness using the fiber optic interferometeric sensor instead of using common accelerometer. To compare two vibration signals a Fabry-Perot fiber optic sensor(FOS) is directly attached to the left-side surface of the lathe tool and an accelerometer is attached near to the fiber optic sensor. Measurement signals from the FOS and theoretical results of receptance simulation are compared. When the amplitude of tool vibration increased the frequency shift phenomena was occurred. This means that mass effect occurred and vibration spectrum moved to the low frequency region. Generally this results is agreement to the regenerative chatter. The chatter frequency is not same as the natural frequency of the tool itself. The FOS can also applied to laboratory experiments for students. This experimental technique is perhaps the first attempts because of directly attachment technique. Therefore, suggested Fabry-Perot fiber optic sensor can be used to monitoring the tool wear and vibration.

High-Accuracy Current Sensing Technique Based on Magnetic Sensors for Three-Phase Switchboards (삼상 배전반에서 자기센서 기반의 고정밀 전류 측정 기법)

  • Lee, Sungho;Kim, Taemin;Kim, Namsu;Ahn, Youngho;Lee, Sungchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.993-998
    • /
    • 2017
  • In this paper, a high-accuracy current sensing technique for three-phase current paths in an electrical switchboard is proposed. Conventional open-style current sensors using magnetic sensors show inaccurate sensing performance with more than 10% error due to undesired magnetic field interference from neighboring paths. To increase accuracy, large and expensive current transformers with large permeabilities have been used, which increased the cost and size. The proposed technique can improve the measured magnetic field by the calculation of magnetic interference effect from neighboring current paths. The relationship between neighboring magnetic fields and the desired magnetic field is theoretically analyzed in a general case. The proposed technique is verified using magnetic field simulations in a three-phase busbar environment.

A Study on CO2 Sensor Module Using NDIR Method (비분산 적외선 방식의 CO2 센서 모듈에 관한 연구)

  • Kim, Gyu-Sik;Oh, Joon-Tae;Kim, Hie-Sik;Kim, Jo-Chun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.36-40
    • /
    • 2009
  • In this paper we discuss about the practical implementation of a combined CO and CO2 dual sensor module that is adapted by NDIR (Non-Dispersive Infrared) method that measures the absorbance of gas like CO and CO2 by using gas particles' characteristics that absorb specific wave lengths of infrared ray. NDIR has a long life time, excellent measurement and precision compared to the existing contact types or chemical types of CO2 sensors. Since optical cavity technology that had been developed until now can measure CO2 only we research and develop an optimal optical cavity design and density-temperature calibration technologies that can measure CO and CO2 at the same time and is important to decide the performance of the sensor module according to well-designed wave guides of the different length.

Under-Thread Sewing Yarn Sensing Monitoring System of Sewing Machine for Smart Manufacturing (스마트 제조를 위한 봉제기의 밑실 센싱 모니터링 시스템)

  • Lee, Dae-Hee;Lee, Jae-Yong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • The ICT concept has been introduced to realize a highly productive smart factory and respond to the demand for small quantity and mass production between textile processes. ICT convergence monitoring system that can produce high productivity textile products by improving product development period, cost, quality and delivery time through ICT based production and optimization of manufacturing process is needed. In this paper, we propose and implement a system design that senses the amount of remaining sewing material using a non-contact sensor that can be mounted on a sewing machine and displays it on a display using IOT-based LATTE-PANDA board.

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

Fingerprint Segmentation and Ridge Orientation Estimation with a Mobile Camera for Fingerprint Recognition (모바일 카메라를 이용한 지문인식을 위한 지문영역 추출 및 융선방향 추출 알고리즘)

  • Lee Chulhan;Lee Sanghoon;Kim Jaihie;Kim Sung-Jae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.89-98
    • /
    • 2005
  • Fingerprint segmentation and ridge orientation estimation algorithms with images from a mobile camera are proposed. The fingerprint images from a mobile camera are quite different from those from conventional sensor, called touch based sensor such as optical, capacitive, and thermal. For example, the images from a mobile camera are colored and the backgrounds or non-finger regions are very erratic depending on how the image capture time and place. Also the contrast between ridge and valley of a mobile camera image are lower than that of touch based sensor image. To segment fingerprint region, we first detect the initial region using color information and texture information. The LUT (Look Up Table) is used to model the color distribution of fingerprint images using manually segmented images and frequency information is extracted to discriminate between in focused fingerprint regions and out of focused background regions. With the detected initial region, the region growing algerian is executed to segment final fingerprint region. In fingerprint orientation estimation, the problem of gradient based method is very sensitive to outlier that occurred by scar and camera noise. To solve this problem, we propose a robust regression method that removes the outlier iteratively and effectively. In the experiments, we evaluated the result of the proposed fingerprint segmentation algerian using 600 manually segmented images and compared the orientation algorithms in terms of recognition accuracy.

Study on characteristics of noncontact vibrating displacement sensor (비접촉식 진동 변위센서의 특성에 관한 연구)

  • Cho, C.W.;Cho, S.T.;Yang, K.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.13-18
    • /
    • 2011
  • This thesis is about the result of conducting a specific experiment for the development of noncontact vibration displacement sensor for measuring the spindle vibration that is used for conditional monitoring of machinery. One should be careful when using the eddy current type displacement sensor because the sensitivity of it is different according to the quality of the material. While the probe used for nondestructive inspection adopts the effect of transmitting the material by using the high frequency domain, the eddy current type displacement sensor uses the lower frequency of around 1MHz. Also, while the nondestructive probe uses the method of enhancing output by using the resonance zone, the vibration displacement sensor utilizes the stable zone by avoiding the resonance zone. Since the oscillator of the converter uses the "L" element as Probe, its characteristic changes with the variation of a relevant impedance. In other words, if the length of Probe's Cable gets extended (Impedance increase), the sensitivity declines accordingly. The effect of surrounding temperature was small, but the influence of the quality of Sensor Coil used was high. Moreover, following an experimental demonstration of the phenomenon where the sensitivity decreases as the frequency of the tested material increases from a frequency response test, the maximum frequency that could be measured was approximately 1KHz. It was noted that the degree of precision could be maintained by using the gap of the probe in the linear zone at the installation site.

A Study of Noncontact Heartbeat and Respiration Detection Using the Doppler Radar (도플러 레이더를 이용한 비접촉 방식의 심박 및 호흡 검출에 관한 연구)

  • Shin, Jae-Yeon;Cho, Sung-Pil;Jang, Byung-Jun;Park, Ho-Dong;Lee, Yun-Soo;Lee, Kyoung-Joung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, a 2.4 GHz doppler radar system consisting of a doppler radar sensor and a baseband module were designed to detect heart beat and respiration signal without direct skin contact. The doppler radar system emits RF signal of 2.4 GHz toward human chest, and then detects phase modulation of the reflected signal so as to investigate cardiopulmonary activities. The heartbeat and respiration signals acquired from I/Q channels of the doppler radar system are applied to the pre-processing circuit, the amplification circuit, and the offset circuit of the baseband module. The designed system was tested on mouse, rabbit and mankind, which have different range of heart rates and respiration signals, to evaluate detection accuracy of the system. ECG acquisition system and respiration transducer were used to generate the reference signal. In our experiments, a performance of detection were found to be high in the case that the subject stays still. In this paper, we confirmed that non-contact heart beat and respiration detection using the doppler radar has the possibility and limitation according to distance, cardiopulmonary activities, range of heart rates and respiration.

Disposable Type Electrochemical Ethanol Sensor (일회용 전기화학적 에탄올 센서)

  • Kim, Moon Hwan;Yoo, Jae Hyun;Oh, Hyun Joon;Cha, Geun Sig;Nam, Hakhyun;Park, Sung Woo;Kim, Young Man
    • Analytical Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.218-223
    • /
    • 1999
  • A single use, screen-printed sensor for the measurement of liquid phase ethanol was developed and its electrochemical performance was investigated. Disposable type edthanol sensor was fabricated by serially screen printing the carbon paste, silverd pasted and insulator inlon a polyester substrate to pattern working and reference electrode sites and electrical contact. Alcohol dehydrogenase(ADH) or alcohol oxidase(AOD) together with appropriate electron transfer mediators was immobilized on the working electrode. To improve the sensitivity and reproducibility of carbon paste electrode, some pretreatment procedures were applied and their resultant electrochemical performance was examined. The disposable type electrochemical ethanol sensor developed in this study conveniently determines the ethanol in liquid samples such as blood and in fermentation process.

  • PDF