• Title/Summary/Keyword: 접착 체결 구조

Search Result 26, Processing Time 0.02 seconds

복합재료 패치를 사용한 균열 보수의 소성변형과 접착층 분리를 고려한 해석

  • 김일중;박재학
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.118-123
    • /
    • 2001
  • 항공기 운항 중에 손상된 부품의 교환이나 수리는 항공기 운항 시 안전 유지와 고가의 항공기 수명연장을 위하여 필수적이다. 여러 가지 손상이나 고장 중에서 균열은 기계적 체결요소(리벳, 볼트 등)나 패칭에 의하여 효과적으로 보수될 수 있다. 항공기 동체 보수 시 접착제 접합을 사용한 복합재료 패칭은 하부구조에 손상이 없이 균열진전을 줄일 수 있고 구멍의 생성으로 인한 응력 집중을 제거할 수 있으며 접합된 면을 외부로부터 차단시켜 부식을 방지하는 효과가 있어 많이 사용된다 특히 고강도 복합재료와 접착제의 개발로 인하여 손상된 구조의 보수를 위한 복합재료 패칭의 사용은 더욱 증가되고 있다.(중략)

  • PDF

A Study on Adhesion Characteristics of Co-cured Long Fiber Prepreg Sheet-Aluminum Hybrid Structures (동시 경화 장섬유 복합재료-알루미늄 혼성 구조물의 접착 특성 연구)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.17-22
    • /
    • 2018
  • Long Fiber Prepreg Sheet (LFPS) has the advantages of excellent production efficiency and formability for complex shapes compared to conventional continuous fiber reinforced composites. When fibrous composites are used with different materials, joining method is important because strength of the joining part determines the strength of the hybrid structure. In this study, the adhesive joint strengths of co-cured LFPS and aluminum were evaluated under various surface treatment conditions and environmental conditions (temperature and moisture conditions). Mechanical abrasion and plasma exposure were used for the surface treatment. The adhesive joints experienced various surface treatments were tested by using single lap joint specimens. Adhesive strengths under various conditions were compared and the most appropriate condition was determined.

Nondestructive Inspection of Launch Vehicle Structural Components (우주 발사체 구조 요소의 비파피검사)

  • Kong, Cheol-Won;Youn, Jong-Hoon;Park, Jae-Sung;Eun, Se-Won;Jang, Young-Soon;Yi, Yeong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.331-337
    • /
    • 2009
  • Space launch vehicles require highly reliable, lightweight structures. It is thus important to monitor the structural health of these components with nondestructive inspections. In this paper, we studied an example of a nondestructive inspection that was partially applied to the manufacture and inspection of a launch vehicle. Ultrasonic tests, X-rays, tapping, and acoustic emissions comprised the inspection method. A payload fairing, high pressure tank, fastener part, and bonding part were used as hardware to be inspected. We proposed a quantitative standard for debonding inspection of the payload fairing and acoustic emission data for the proof test of the high pressure tank. We analyzed the fracture mode of the sandwich fastener part according to frequency changes. We also proposed a standard specimen for ultrasonic inspection of bonds of different materials. The present analyses and results provide data for evaluation of the launch operation sequence to ensure launch vehicles afford high reliability.

A Study on the Strength Evaluation and Defect Detection Capability of Adhesive Joint with CNTs (CNT를 첨가한 접착조인트의 결함탐지능 및 강도 평가에 관한 연구)

  • Kim, Tae-Hyeong;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.151-155
    • /
    • 2018
  • Mechanical joint and adhesive joint are two typical joining methods for structures. The adhesive joints distribute the load over a larger area than mechanical joints and have excellent fatigue properties. However, the strength of adhesive joint greatly depends on the environmental conditions and the skill of the operator. Therefore, there is a need for techniques to evaluate the quality of the adhesive joints. The electric resistance method is a very promising technique for detecting defects by measuring the electrical resistance of an adhesive joint in which CNTs are dispersed in an adhesive. In this study, Aluminium-Aluminium adhesive single lap joint specimens were fabricated by using the adhesive dispersing CNTs using a sonicator and a 3-roll mill, and the static strengths and defect detection capabilities of the joints using the electrical resistance method were evaluated according to the CNTs content.

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints (금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구)

  • Lee, Byeong-Hee;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Choi, Ik-Hyeon;Chang, Sung-Tae
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

Failure Strength of the Composite Mechanical Joint according to the Stacking Angle (적층각 변화에 따른 복합재료 기계적 체결부의 파손강도)

  • Jo, Dae-Hyeon;Kim, Cheol-Hwan;Choi, Jin-Ho
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.229-234
    • /
    • 2017
  • Generally, joints are the weakest part in the composite structures. Composite joints can be classified into adhesive joints and mechanical joints, and mechanical joints are mainly used in areas less sensitive to environmental conditions. In this paper, the failure loads of composite mechanical joints with five different stacking angles are tested and predicted. Finite element analysis of mechanical joints were performed and failure loads were predicted by the FAI(Failure Area Index) method using Tsai-Wu and Yamada-Sun failure criteria, and the predicted failure loads were compared with experimental results. From the experiment and analysis, the failure loads of the mechanical joints were decreased as the ratio of 0 degree layer was low and they could be predicted within 13.03% using the FAI method and Yamada-Sun failure criteria.

기술현황분석 - 알루미늄 차체부품의 SPR 접합기술 동향

  • Seo, Jeong;Gang, Hui-Sin;Lee, Mun-Yong;Jo, Hae-Yong
    • 기계와재료
    • /
    • v.23 no.3
    • /
    • pp.138-146
    • /
    • 2011
  • 자동차 차체 경량화를 위해 알루미늄 스페이스 프레임 구조가 개발되고 있으나, 관재결합이 필요하기 때문에 기존의 저항 점용접이 적용되기 어렵다. 또한, 멤버와 멤버의 연결부에서는 철강재난 고강도 재료의 사용이 요구되므로 이종재료 접합기술이 필요하다. 알루미늄 및 이종재료 접합방법으로는 볼트체결, 클린칭, SPR 접합, 접착재 등이 있으나, SPR 접합은 기계적인 결합방법의 하나로, 일반 리벳공정과는 달리 별도의 홀이 필요없기 때문에 자동화에 용이하며 작업시간도 빠르다. 리벳의 압입 방식으로 판재의 열변형이 거의 없고 친환경적인 공법으로 사용되고 있으며, 소음이 적고, 용접이 불가능한 이종재료의 결합도 가능하다. 무엇보다 자동차 양산용 장비 적용이 용이하기 때문에 기존의 저항 점용접을 대체하기 편리하다. 따라서, 본 글에서는 알루미늄 차체 부품 접합을 위한 SPR 접합공법에 대한 국내외 기술개발 동향을 분석하고, 한국기계연구원에서의 최근 기술개발 내용을 소개하고자 한다.

  • PDF

Design of a Stainless Steel Insert for Mechanical Joining of Long Fiber-reinforced Composite Structures (장섬유강화 복합재료 구조물의 기계적 접합을 위한 스테인레스 강 인서트 설계)

  • Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.139-144
    • /
    • 2018
  • Long Fiber-reinforced composites have advantages of excellent production efficiency and formability of complex shapes compared to conventional continuous fiber reinforced composite materials. However, if we need to make complicated composite shapes or to assemble parts made of different materials, a variety of joining methods are needed. In general, long fiber prepreg sheet (LFPS) contains mold release agent to facilitate demolding after thermoforming. Therefore, mechanical fastening is required in addition to the adhesive bonding to get proper joining strength. In this study, we proposed a stainless steel insert for co-cure bonding which cures LFPS and bonds the stainless steel insert through thermoforming process. The wing of the insert which is spread during the thermoforming process induces adhesion and mechanical wedging effect and serves as a hook to resist the pulling force. The burn-out method was used to confirm the unfolded state of the stainless steel insert wings inserted into the composite material. The static pull-out test was performed to quantitatively evaluate the joining strength. From these experimental results, the condition which guarantees the most appropriate joining strength was derived.

A study on the acoustic emission characteristics of laminated composite structures (복합재료 적층 구조물의 음향방출 특성 연구)

  • 박재성;김광수;이호성
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.16-22
    • /
    • 2003
  • This paper studied the AE(acoustic emission) characteristics of the laminated composite structures. The composite stiffened panels under the compressive loading emitted various AE signals when they buckled or changed the buckling modes. In addition, the failure initiated and propagation generated a lot of complex signals. From the continuous signal generation. we identified when the failures initiated and whether they propagated or not. The single lap joint of laminated plates under tensional load also generated AE signals when bonding region failed. The first failure occurrence and its propagation are monitored by generated AE signals. The characteristics of AE signals used in this analysis are cumulative hits, hit distribution, peak frequency of generated AE waveform and amplitude of signals. The analysis of AE signals shows that continuous increment of cumulative hits can be regarded as damage propagation and three dominant peak frequencies can correspond to typical failure modes in the laminated composites.

Damage Study on the Mechanical Fastening in Laminated Composites (복합적층판(復合積層板)의 기계적(機械的) 체결부(締結部)에 관한 파손연구(破損硏究))

  • Kwan-Hyung,Song
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.4
    • /
    • pp.58-66
    • /
    • 1990
  • A series of test was performed measuring the failure strength and failure mode of Gr/Pi, $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate containing a single pin loaded hole. The finite element method is applied to calculate the stress distribution in the laminates, then the failure load and the failure mode were predicted by means of the characteristic length. 12 different geometric variations were developed to analyze the effects of the ratio of specimen width to hole diameter (W/d) and ratio of edge distance to hole diameter (L/d). X-Ray of NDE methods were utilized in finding out the initial defects, damage and the fracture mechanism, and SEM(Scanning Electron Microscopes) was used the evaluation of the fracture mechanism and crack propagation around hole under tension pin loading. $[0^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}]_s$ laminate are found to be most sensitive to W/d but not so influenced by L/d. The failure mode and tensile strength predicted by the model show agreement with experiment data for pin loading bolted jointed test except range of $L/d{\leqq}3$.

  • PDF