• Title/Summary/Keyword: 접착요소

Search Result 182, Processing Time 0.024 seconds

Properties and Glue Shear Strength of the Water Soluble Urea-Phenol Copolymer Adhesive as a High Temperature Curing Binder for Plywood (합판용(合板用) 고온경화형(高温硬化型) 수용성(水溶性) 요소(尿素)·페놀공축합수지(共縮合樹脂)의 성질(性質)과 그 접착강도(接着強度))

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.60 no.1
    • /
    • pp.51-57
    • /
    • 1983
  • Properties and glue shear strength of each water soluble rues-phenol copolymer adhesive and phenolic resin adhesive were examined as a high temperature curing binder through the manufacture of plywood made of Kapur veneer. The former has different molar ratio and the latter was made from different catalyst method. The results are summarized as follows: 1) Specific gravities of air dried plywood manufactured from each adhesive ranged from 0.67 to 0.82 and their moisture contents met the K.S. standard 2) In dry and wet shear strength, adhesives with 60 percent of non volatile content showed higher values than those with 50 percent except phenolic resin. Urea-phenol copolymer resin with 20 percent of phenol content exhibited the highest, and that with 70 percent the lowest. Filling effect of wood flour on the bonding strength is great in urea-phenol copolymer resin with more than 50 percent of phenol content, especially significant in 50 percent of non volatile content including alkali catalyst phenolic resin. Alkali and acid catalyst methods were the highest among the adhesive manufacture methods. In wet strength, urea resin belongs to the lowest group. 3) In glue shear strength after boiling and drying test, no method for manufacturing phenolic formaldehyde resin adhesive was stronger than alkali and acid catalyst methods. Phenolic resin made from alkali catalyst method needs a wood flour filler to improve the bonding quality. Urea-phenol copolymer resin with 10 percent of phenol content showed the reasonable water resistance.

  • PDF

Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model (3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석)

  • Sun, Ren-Juan;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.145-157
    • /
    • 2008
  • Load transfer efficiency (LTE) reflects the structural performance of doweled and undoweled joints of Jointed Concrete Pavement (JCP). A 3-dimensional (3-D) model of JCP was built using ABAQUS software in this study. Three concrete slabs were placed on bonded sublayers composed of a base and subgrade. Spring elements were used to connect the adjacent slabs at joints. Different spring constants were input to the model to simulate different joint stiffness of the concrete pavement. The LTE of the joint increased with an increase of the spring constant. The effects of material properties and geometric shape on the behavior of JCP were analyzed using different elastic modulus and thickness of the slab and base in the modeling. The results showed the elastic modulus of the subgrade affected the behavior of the slab and LTE more than that of the base and the thickness of the slab and base. The effects of a negative temperature gradient on the behavior of the slab and LTE were more than that of positive and zero temperature gradients. Joints with low stiffness were more sensitive to the temperature gradient of the slab.

  • PDF

Durability Evaluation of Thermal Barrier Coating (TBC) According to Growth of Thermally Grown Oxide (TGO) (TGO 성장을 고려한 열차폐코팅의 내구성평가)

  • Song, Hyun Woo;Moon, Byung Woo;Choi, Jae Gu;Choi, Won Suk;Song, Dongju;Koo, Jae-Mean;Seok, Chang-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1431-1434
    • /
    • 2014
  • The thermal barrier coating (TBC) applied to a gas turbine can be damaged by repeated thermal fatigue during operation, so an evaluation of its durability is needed. Thermally grown oxide (TGO) is generated inside the TBC in a high-temperature environment. The growth of TGO is known to be the main cause of damage to the TBC. Therefore, the durability of TBC should be evaluated according to the growth of TGO. In this research, Kim et al.'s work on the growth of TGO with aging was used as a basis for finite element analysis. The relationship between stress and aging was derived from the finite element analysis results. The durability of the TBC with aging was evaluated through a comparison between the results of the finite element analysis and a bond strength test.

Convergence Study on Composite Material of Unidirectional CFRP and SM 45C Sandwich Type that Differs in Stacking Angle (적층각도가 다른 단방향 CFRP와 SM45C샌드위치형 복합재료에 관한 융합적 연구)

  • Park, Jae-Woong;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.231-236
    • /
    • 2017
  • In this study, the inhomogeneous material composed of CFRP(carbon fiber reinforced plastic) and structural metal of SM45C is used for the light material. The finite element analysis on the basis of compact tension test was carried out by using the composite material for sandwich type bonded with the unidirectional CFRP that differs in fiber stacking angle at both sides with the core of SM 45C. CT test is the representative method to confirm the fracture behaviour due to crack in material under the load. The effect on crack and hole must be investigated in order to apply inhomogeneous material to mechanical structure. As the result of this study, the fracture behaviour by CT test of the composite material for sandwich was studied by simulation analysis. The sandwich composite of unidirectional CFRP with the stacking angle of [0/60/-60/0] has the superior strength and the maximum equivalent stress of about 182GPa.Also, the esthetic sense can be shown as the designed factor of shape with composite material is grafted onto the convergence technique.

Failure Characteristics of Scarf Patch-repaired Composite Single-lap Joints (스카프 패치로 수리한 복합재 단일겹침 체결부의 파손 특성 연구)

  • Kim, Choong-Hyun;Yoo, Jae-Seung;Byeon, Chang-Seok;Ju, Hyun-Woo;Park, Min-Young;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • The failure strength of composite single-lap joint repaired using scarf patch was investigated by test and finite element method. A total of 45 specimens were tested changing scarf ratio, stacking pattern, and defect size to study the failure strength and mode. Except for one case, all repaired specimens showed the equal or higher strength than the sound specimens and the effect of considered repair parameters was not remarkable. It was found through the failure mode inspection that the surface treatment for bonding was not enough in the case which failed at the lower load than the sound specimen. Three-dimensional finite element analysis was conducted to verify the test results. It was confirmed that the considered repair parameters do not significantly affect the stress distribution of the specimens. It was also observed that the applied tensile load is relieved passing through the overlapped region thickness of which is almost double. From this study, it is concluded that if the bonding procedure for adherends and patch including surface treatment for fabric layer is thoroughly followed, the strength of repaired single-lap joint can be restored up to the strength of sound one.

Effects of Treatment Methods of Fire-retardant and Layup of Treated Veneers on the Performances of Plywoods (내화약제(耐火藥劑)의 처리방법(處理方法) 및 처리단판(處理單板)의 조판형태(調板形態)가 합판(슴板)의 성능(性能)에 미치는 영향(影響))

  • Son, Jung-Il;Cho, Jae-Sung;Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.39-50
    • /
    • 1999
  • This research was carried out to investigate the development of fire-retardancy treatment technology and performance evaluation of fire-retardant treated plywoods. Radiata pine, keruing, dillenia, calophyllum and terminalia veneers were treated by normal(conventional) pressure soak(NPS) and vacuum-pressure-soak(VPS) using 20% water solution of diammonium phosphate. Then, 4.8mm thick, 3ply plywoods were fabricated with combination of fire-retardant treated, untreated or water-immersion types and several composition types of radiata pine and keruing veneers, i,e. the uniform and the mixed types in species composition, and the homogenious and the alternate layer types in veneer treatment. In composed species, the retention and the treatment effects of fire-retardant chemicals III radiata pine was still greater than those of keruing. The effect of VPS treatment was larger than that of NPS treatment, however, adhesive bonding strength and bending strength of plywoods treated by these two methods were not necessarily lowered, compared to those of untreated plywood. And also, fire endurance performance of the urea melamine resin-bonded plywood was greater than that of the phenol resin-bonded plywood. In result, the appropriate combination in veneer species and layer as well as alternate fire-retardant treatments would be more efficiently available in service.

  • PDF

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF

Effect of patch repair in aluminum plate with a circular hole by 3-D full layerwise model (완전 층별이론에 의한 원공을 갖는 알루미늄 판의 패치 보강 효과)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok;Yang, Seung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.304-307
    • /
    • 2009
  • 본 논문에서는 3차원 모델링을 이용하여 원공을 갖는 알루미늄 판의 패치 보강효과에 대해 알아보고자 한다. 구조물의 노후화로 인해 높은 응력을 받는 부재의 응력 특이점에서 내구력이 급격하게 저하되거나 때로는 부재의 정적파괴를 유발시키는 원인을 제공한다. 이로 인해 과거에는 손상된 모재에 보강 재료를 연결시키기 위하여 리벳 또는 볼트와 같은 기계적 연결을 통해 보강하였으나 최근에는 접착패치보강 기법이 그 주류를 이루고 있다. 패치 보강시 일면 패치 보강으로 인하여 면외 휨 효과가 발생된다. 판의 두께 방향에 따른 응력집중계수를 별도로 분석하였다. 기존의 3차원 솔리드 요소는 해의 정확성은 뛰어난 반면에 상당한 컴퓨터 시간을 요구하는 단점을 가지고 있다. 이러한 문제를 극복하기 위해서, 본 논문에서는 각 층의 변위장을 2차원 형상함수와 1차원 형상함수의 조합으로 구성하여, 면내거동에 대한 p-세분화와 면외거동에 대한 p-세분화를 분리시키는 방식을 취한다. 또한, 에너지 함수의 적분시 Gauss-Lobatto 적분법을 사용하여 절점의 위치에서의 응력점을 구하는 경우, 외삽과정을 계산하는 단계를 생략하면서도, 해의 정확성 측면에서는 거의 차이가 없기 때문에 좀 더 효율적인 수치적분이 될 수 있다.

  • PDF

Effects of the Adhesive Thickness and Residual Thermal Stress on the Torque Capacity of Turbular Single Lap Joints (접착제의 두께와 열 응력에 따른 조인트의 토크 특성)

  • 최진호;이대길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1841-1852
    • /
    • 1992
  • With the wide application of fiber-reinforced composite material in aircraft, space structures and robot arms, the design and manufacture of composite joints have become a very important research area because they are often the weakest areas in composite structures. In this study, the effects of the adhesive thickness, residual thermal stress on the torque capacity of the tubular single lap joints were studied. The torque capacity of the adhesive joints were experimentally determined and found to be inversely proprotional to the adhesive thickness. In order to match the experimental results to the theoretical analyses, the elastic-perfectly plastic material properties of the adhesive were used in the closed form solution. Also, the residual thermal stress of the joints were calculated by the finite element method and it was proved that the residual thermal stress could play an important role in the thick adhesive joints.

The surface modification research of Polypropylene by plasma discharge (플라즈마 처리에 의한 Polypropylene 섬유의 표면개질 연구)

  • Lee, Chang-Seok;Kwon, Young-Mi;Ryu, Sun-A;Jo, Jang-Hoon;Jo, Hang-Sung
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.34-34
    • /
    • 2012
  • Polypropylene 섬유는 세계적으로 큰 관심을 모으고 있는 섬유 소재로 환경친화성, 경량성, 신축성 등 다양한 기능성을 보유하여 미국, 일본 등의 선진국에서 의류 및 인테리어용으로 채택하여 널리 사용되고 있다. 그러나, polypropylene 섬유는 다른 섬유에 비해 융점이 매우 낮아 내열성이 약하여 가공 공정시 고온을 피해야 하고, 곁가지가 거의 없고 섬유 분자 구조가 매우 조밀하며 탄소와 수소로만 이루어진 분자구조에 의한 극소수성 성질 때문에 다른 종류의 물질들과 접착력이 없어 사용에 제약을 주어 다양한 용도로의 활용이 제한되고 있는 실정이다. 본 연구에서는 Polypropylene 섬유의 제품화에 필요한 요소 기술의 기초를 마련하고자 대기압 플라즈마를 적용하여 소수성 표면을 지니는 표면을 친수화 함으로써 polypropylene 섬유에 후가공이 가능하도록 한다. 따라서 Plasma 표면 처리에 의해 polypropylene 섬유에 미치는 영향에 대하여 조사하고, 표면을 친수화 함으로써 습윤성, 접착성 등 다양한 가공 기술을 적용하여 PP 섬유의 기능성을 향상시키고자 한다. 플라즈마 처리에 의한 폴리프로필렌 섬유의 모폴로지 변화는 주사전자현미경 (FE-SEM)으로 확인하였으며 표면개질 효과는 Wicking Test로 평가하였다.

  • PDF