• Title/Summary/Keyword: 점화 지연 시간

Search Result 86, Processing Time 0.025 seconds

Analysis on Ignition Delay Time According to the Ratio of Bio-aviation Fuel in Jet A-1 Mixture (바이오항공유의 함량 변화에 따른 점화지연특성 분석)

  • Kang, Saetbyeol;Jeong, Byunghun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2019
  • In this study, the ignition delay time of blended aviation fuels was measured and analyzed to confirm the characteristic of ignition delay according to the blending ratio of bio-aviation fuel to petroleum-based aviation fuel. The ignition delay time of bio-aviation fuel(Bio-6308) was shorter than that of petroleum-based aviation fuel(Jet A-1) at all measured temperatures; further, the ignition delay time of the blended aviation fuels shortened as the ratio of Bio-6308 increased. It was confirmed that the aromatic compounds constituting the Jet A-1 affect these results; this was done by comparing the obtained ignition delay time with that of n-heptane/Toluene.

Ignition Transition by Ignition Position and time of Gaseous Oxygen/Kerosene Combustor (기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구)

  • Song, Wooseok;Son, Min;Shin, Dongsoo;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.814-819
    • /
    • 2017
  • The objective of this paper is to observe effects of an ignition position and time on the ignition transition. A gaseous oxygen and liquid kerosene are used for propellants with the shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. The ignition position was changed with the injector spacer. Sequences except the igniter operation time were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Also, the unstable flame development zone was detected as the igniter was away from the injector.

  • PDF

Shock Tube and Modeling Study of Ethanol Ignition (에탄올 점화 과정에 관한 충격관 실험 및 모델 연구)

  • Shin, Kuan-Soo;Park, Ki-Soo;Gwon, Eun-Sook
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.12-16
    • /
    • 2004
  • The ignition of ethanol-oxygen-argon mixture was studied in reflected shock waves over the temperature range of 1281-1625 K and the pressure range of 0.69-1.06 bar. The ignition delay time was measured by the sudden increase of pressure profile and the radiation emitted by OH radicals. The relationship between the ignition delay time and the concentrations of ethanol and oxygen was determined in the form of mass-action expressions with an Arrhenius temperature dependence. In contrast to the behavior observed in methanol, ethanol acts to inhibit rather than accelerate its own ignition. Several kinetic mechanisms proposed for ethanol oxidation at high temperatures have been tested by the computer simulation.

Ignition Transition by Ignition Position and Time of Gaseous Oxygen/Kerosene Combustor (기체산소/케로신 연소기에서 점화 위치 및 시간에 따른 점화 과정 연구)

  • Song, Wooseok;Shin, Dongsoo;Son, Min;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.85-90
    • /
    • 2018
  • The objective of this paper is to observe effects of ignition position and time on ignition transition. A gaseous oxygen and liquid kerosene mixture is used as propellant with a shear-coaxial injector. In order to study the ignition delay time and combustion instability intensity, the pressure transducer was used. Sequences, excepting igniter operation time, were fixed to compare the ignition time only. Initial pressure peak and ignition delay time increased as the ignition time was delayed. Additionally, an unstable flame development zone was detected when the igniter was away from the injector.

Effects of Fuel Composition and Pressure on Autoignition Delay of Biomass Syngas (혼합비율 및 압력 변화가 바이오매스 합성가스의 점화지연 시간에 미치는 영향)

  • Shim, Tae Young;Kang, Ki Joong;Lu, Xingcai;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.945-952
    • /
    • 2015
  • The autoignition characteristics of biosyngas were investigated both numerically and experimentally. The effects of the temperature, gas composition, and pressure on the autoignition characteristics were evaluated. A shock tube was employed to measure the ignition delay times of the biosyngas. The numerical study on the ignition delay time was performed using the CHEMKIN-PRO software to validate the experimental results and predict the chemical species in the combustion process. The results revealed that the ignition delay time increased with an increase in the hydrogen fraction in the mixture. Under most temperature conditions, the ignition delay time decreased with a pressure increase. However, the ignition delay time increased with an increase in pressure under relatively low temperature conditions.

B-KNO$_3$ 점화제의 노화 현상 분석

  • 장승교;류병태
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.14-14
    • /
    • 1997
  • 추진제의 노화 못지 않게 점화제의 노화도 추진 기관 성능에 큰 영향을 미칠 것으로 예측된다. 따라서 10년 이상 경과된 활성 모터에서 점화기를 분해하여 노화에 의한 점화제의 성능 변화를 알아보았다. 분석에 사용한 점화제는 II-D Bi-Convex형상의 B-KNO$_3$ 펠렛으로 열량, 자동 점화온도, 기계적 물성의 변화를 관찰하였고, 밀폐 용기(Closed bomb)에서 연소시험을 통하여 노화에 따른 점화알약의 압력변화를 측정하고 이론 값과 비교하였다. 또한 비활성 모타를 이용한 연소시험으로 점화기의 점화지연시간, 최대 압력, 최대 압력 도달시간 등을 측정하고 이론식과 비교하여 노화에 의한 변화를 관찰하였다.

  • PDF

Ignition Characteristics of an Oxidizer Rich Preburner (산화제 과잉 예연소기 점화특성)

  • Moon, Il-Yoon;Moon, In-Sang;Hong, Moon-Geun;Kang, Sang-Hun;Yoo, Jae-Han;Ha, Seong-Up;Lee, Seon-Mi;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.106-109
    • /
    • 2012
  • It was designed and tested ignition that an oxidizer rich preburner for a staged combustion cycle liquid rocket engine propelled by kerosene and LOx. Operation conditions of the preburner are about 60 of OF ratio and 20 MPa of combustion pressure. Ignition characteristics were compared by propellants flowrate. As the results, the higher propellants flowrate, the shorter the ignition delay time and the higher ignition stiffness. The ignition delay time was affected by incoming the oxidizer flowrate through the refrigerative cooling channels. The oxidizer flowrate from the cooling channels decreased by inflow of combustion gas during initial ignition. The oxidizer flowrate of the cooling channels increases, it is rapid recovery by cooling effect, eventually the ignition delay time decreases.

  • PDF

Analysis on Ignition Delay Characteristics of Bio Aviation Fuels Manufactured by HEFA Process (HEFA 공정으로 제조된 바이오항공유의 점화지연특성 분석)

  • Kang, Saetbyeol
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.620-627
    • /
    • 2019
  • In this study, ignition delay characteristics of various bio aviation fuels (Bio-ADD, Bio-6308, Bio-7720) produced by HEFA process using different raw materials were compared and analyzed. In order to confirm the feasibility of applying bio aviation fuel to actual system, ignition delay characteristics of petroleum-based aviation fuel (Jet A-1) and blended aviation fuel (50:50, v:v) also analyzed. Ignition delay time of each aviation fuel was measured by using CRU, surface tension measurement and GC/MS and GC/FID analysis were performed to interpret the results. As a result, ignition delay time of Jet A-1 was the longest at all temperature because it contains aromatic compounds about 22.8%. The aromatic compounds can produce benzyl radical which is thermally stable and has low reactivity with oxygen during decomposition process. In the case of bio aviation fuels, ignition delay times were measured similarly because the ratio of n-paraffin/iso-paraffin constituting each aviation fuel is similar (about 0.12) and the composition ratio of cycloparaffin also has no difference. In addition, ignition delay times of blended aviation fuels (50:50, v:v) were measured close to the mean value those of each fuel so it was confirmed that it can be applied without any changing or improving of existing system.

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Comparison of Ignition Delay Time of Petroleum-based and Bio Aviation Fuel (석유계 및 바이오 항공유의 점화지연시간 비교)

  • Kang, Saetbyeol;Han, Jeongsik;Jeong, Byunghun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.118-125
    • /
    • 2018
  • This study aimed to obtain data for a comparative analysis of the properties of bio aviation fuel to be developed in the future by measuring and comparing the ignition delay times of various presently used aviation fuels. In the case of petroleum-based aviation fuel, the ignition delay time of exo-THDCP was 4.92 ms, which was 3.42 times longer than 1.44 ms of Jet A-1 at $590^{\circ}C$ / 55 bar. In the case of foreign bio aviation fuel, the ignition delay time of 11POSF7629 was the longest (1.16 ms), while the ignition delay time of 10POSF6308 (1.06 ms), 12POSF7720 (1.07 ms), and 07POSF5172 (1.05 ms) were similar.