• Title/Summary/Keyword: 점화지연시간

Search Result 86, Processing Time 0.017 seconds

Shock Tube and Modeling Study of Ignition in Methane (메탄 기체의 점화 현상에 관한 충격관 실험 및 모델 연구)

  • Jee, Sung Bae;Kim, Won Kyoung;Shin, Kuan Soo
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.156-160
    • /
    • 1999
  • The ignition of methane-oxygen mixtures highly diluted with argon was examined in the temperature range of 1516-1937 K behind a reflected shock wave. The ignition delay times were measured by monitoring pressure profiles and the total emissions at 5.0 cm from the end wall. It was found that the experimental result was correlated by the temperature and the concentrations of the gases. To complement the experiment, computer modeling study of methane oxidation was carried out using a GRI 1.2 mechanism.

  • PDF

Numerical Analysis on the Autoignition of Hydrogen/Air Mixture Near a Hot Surface (고온벽면에 의한 수소-공기 예혼합기체의 자연발화에 관한 수치적 해석)

  • 박은성;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 1992
  • Ignition of hydrogen-air premixed gas in the vicinity of a hot surface has been investigated. Especially multistep reaction model was compared with a single reaction model. It was found that the multistep model with 48 step elementary chemical reactions produced a phenomenologically reasonable trend in ignition delays. The ignition d(2lays increase as the mixture becomes either fuel-rich or fuel-lean with a minimum near the stoichiometric value. The minimum surface temperature has been deduced by extrapolating predicted ignition delays. It was in quite good agreement with the experimental data.

Development of Hydrogen Peroxide Thruster adopted Silver Catalyst (은을 촉매로 사용하는 과산화수소 추력기 개발)

  • Lee, Su-Lim;Lee, Choong-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.67-73
    • /
    • 2007
  • In recent years hydrogen peroxide has become considerably more attractive as a green rocket propellant so a laboratory model of hydrogen peroxide thruster adopted silver catalyst and a test facility has been developed to research a hydrogen peroxide propulsion. The design scheme of thruster and the test data are presented including ignition delay, efficiency of characteristic exhaust velocity. As a result, 95% of efficiency of characteristic exhaust velocity was obtained at steady state operation condition.

A Real-Time Synchronization Mechanism for Distributed Multimedia Applications (분산 멀티미디어 응용을 위한 실시간 동기화 메카니즘)

  • Park, Young-Sook;Lee, Syung-Won;Chung, Gi-Dong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3785-3793
    • /
    • 2000
  • Effective synchronization specification model which can specify temrxlral relationship among media resolving asynchronous problem due to variable network delay is necessary in a distributed multimedia system. Therefore in this paper, we propose RTPN(Real- Time Petri Net) synchronization specification model based on Petri Net for multimedia application in a distributed real time environment. The proposed RTPN model supplies a tlexible decsription of the temporal relationship among various media objects by defining primary key media and relative key media according to delay and importance among media. Firing rule is instantly executed by firing function based on QoS values which supports intra-media and inter-media syncbronization. And asynchronous control algorithm for resynchronization of presentation level is possible more effective supporting of QoS.

  • PDF

Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components (모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구)

  • Kim, Gyujin;Lee, Sangyul;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

On-orbit Thermal Control of MEMS Based Solid Thruster by Using Micro-igniter (MEMS 기반 고체 추력기의 마이크로 점화기를 이용한 궤도 열제어)

  • Ha, Heon-Woo;Kang, Soo-Jin;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.802-808
    • /
    • 2014
  • MEMS based solid propellant thruster researched for the purpose of an academic research will be verified at space environment through CubeSat program. For this, the temperature of the MEMS thruster should be within allowable operating temperature range by proper thermal control to prevent the ignition failure caused by ignition time delay and to guarantee the structural safety of the MEMS thruster in the low temperature. In this study, we proposed an effective thermal control strategy, that is to use micro-igniter as a heater and temperature sensor for active thermal control instead of using additional heater. The effectiveness of the strategy has been verified through on-orbit thermal analysis of CubeSats with MEMS thruster.

Relationship between Autoigniton Temperature(AIT) and Ignition Delay Time for Acids (산(Acid)류의 자연발화온도와 방화지연시간의 관계)

  • 하동명
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • An accurate knowledge of the AIT(Autoignition temperatures) of chemicals is important in developing appropriate prevention and control measures in industrial fire protection. The AITs describe the minimum temperature to which a substance must be heated, without the application of a flame or spark, which will cause that substance to ignite. The measurement AITs are dependent upon many factors. namely initial temperature. pressure, volume, fuel/air stoichiometry. catalyst material, concentration of vapor, ignition delay time. This study measured the AITs of acids from ignition delay time by using ASTM E659-78 apparatus which was produced in the year 1994. The experiment AITs were a good agreement with the calculated AITs by the proposed equations with a few A.A.P.E.(average absolute percent error) and A.A.D.(average absolute deviation).

A Review of the Technical Development on Ionic Liquids for Hypergolic Propellants (하이퍼골릭 이온성 추진제 연구 개발 동향)

  • Hongjae Kang;Kyounghwan Lee;Chungman Kim;Jongkwang Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.6
    • /
    • pp.74-85
    • /
    • 2022
  • Since the late 1990s, the demand for developing green or reduced-toxic storable propellants has been rising to replace the existing toxic propellants. Most of the research activities are focusing on development of new hypergolic fuels and either white fuming nitric acid or hydrogen peroxide is utilized as an oxidizer. The newly-developed hypergolic fuels are classified as three types, catalytic fuel, reactive fuel, and ionic fuel. In the present study, recent R&D trend of ionic liquid propellants is described and the main results in the previous studies are analyzed.

Study on Boron-bead Combustion Characteristics for High Energy Gas Generator (고에너지 가스발생기용 보론 비드의 연소특성 연구)

  • Han, Doo-Hee;Kang, Jeong-Seok;Shin, Jun-Su;Sung, Hong-Gye;Shin, Kyung-Hoon;Choi, Sung-Han;Hwang, Kab-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.26-32
    • /
    • 2014
  • The combustion characteristics of Boron-beads to improve the energy density of gas generator has been investigated in accordance with diameter of beads and their composition. In this paper, electrically heated tungsten sheet and visualized furnace are applied to measure ignition temperature and burning time of bead respectively. The results proposes ignition temperature between 720~800 K and burning time proportional to bead diameter. Also a ignition delay of boron particle is detected through the temperature and radiation intensity measurements.

Observation of Ignition Characteristics of Coals with Different Moisture Content in Laminar Flow Reactor (층류 반응기를 이용한 수분함량에 따른 석탄 휘발분의 점화 특성에 관한 연구)

  • Kim, Jae-Dong;Jung, Sung-Jae;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • The main objective of this study is to investigate the variation in the ignition characteristics of coals as a function of moisture content in a laminar flow reactor (LFR) equipped with a fuel moisture micro-supplier designed by the Pusan Clean Coal Center. The volatile ignition position and time were observed experimentally when a pulverized coal with moisture was fed into the LFR under burning conditions similar to those at the exit of the pulverizer and real boiler. The reaction-zone temperature along the centerline of the reactor was measured with a $70-{\mu}m$, R-type thermocouple. For different moisture contents, the volatile ignition position was determined based on an average of 15 to 20 images captured by a CCD camera using a proprietary image-processing technique. The reaction zone decreased proportionally as a function of the moisture content. As the moisture content increased, the volatile ignition positions were 2.92, 3.36, 3.96, and 4.65 mm corresponding to ignition times of 1.46, 1.68, 2.00, and 2.33 ms, respectively. These results indicate that the ignition position and time increased exponentially. We also calculated the ignition-delay time derived from the adiabatic thermal explosion. It showed a trend that was similar to that of the experimental data.