• Title/Summary/Keyword: 점화시험

Search Result 212, Processing Time 0.03 seconds

Pressure Control of Staged Combustion Liquid Rocket Engine (다단연소사이클 액체 로켓엔진의 압력제어에 대한 연구)

  • Hwang, Changhwan;Lee, Kwangjin;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;Lee, Jungho;Yoo, Byungil;Han, Yeoungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.88-93
    • /
    • 2017
  • For the control of pre-burner combustion pressure, the open angle of TTR(Throttle for Thrust Regulation) valve was varied from $143^{\circ}$ to $185^{\circ}$ while testing of cold flow, ignition, combustion. The major performance variables of rocket engine and hydraulic performance of TTR valve regarding the open angle was verified. However the controllability of pre-burner combustion pressure was not verified due to the limitations of test. The comprehensive research will be done after supplementing these problems.

  • PDF

Design and Hot Fire Tests of the Pyrostarter for Liquid Rocket Engines (액체로켓엔진용 파이로시동기의 설계 및 연소시험연구)

  • Kang, Sang Hun;Jang, Jesun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.48-55
    • /
    • 2014
  • In present study, design and hot fire tests of the pryostarter are conducted. To prevent the turbopump RPM overshoot, regressive mass flow rate profile is applied. Sudden decrease of the mass flow rate at the end of the propellant burning is realized as well. Firing test results show good agreements with the design requirements. Through the study with ignition substance variations, combustion products and ignition performances are improved.

Analysis on Initial Stability Test Results of Underwater Vehicle Using the HR Propulsion System (HR추진기관을 이용한 수중운동체의 초기안정성 시험 결과 분석)

  • Hwang, Heeseong;Kim, Hakseong;You, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1142-1143
    • /
    • 2017
  • In this paper, Underwater propulsion test of SWASH(Small Waterplane Area Single Hull) type underwater vehicle with hybrid rocket system is performed. Watertight structure is applied to prevent a combustion chamber from water, and the control logic is constructed by setting the watertight ignition sequence. As a results, It is confirmed that the ignition is stable in water, and the propulsion system works well along the configured control sequence.

  • PDF

Effect of Injector Cooling on Ignition of Cryogenic Spray (분사기 냉각이 초저온 분무의 점화에 미치는 영향)

  • Kim, Do-Hun;Lee, Jin-Hyuk;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The cooling of a injector effects on the vapor pressure of cryogenic oxidizer spray, and it decides the phase transition point at the ignition process, when the combustion chamber pressure increases drastically. The phase transition of oxidizer spray affects the ignition characteristics, and several ignition tests with the LOx/$GCH_4$ uni-element coaxial swirl injector was performed in the different initial temperatures of oxidizer injector, in order to investigate the effect of injector cooling on the ignition transient characteristics. At the transition point of oxidizer phase, where the combustion chamber pressure increased over the LOx vapor pressure, the temporary quenching phenomenon of the flame occurred. The lower temperature of chilled down injector and tubing tends to move up the phase transition earlier.

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byung-Tae;Lee, Do-Hyung;Ryoo, Baek-Neung;Choi, Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.352-358
    • /
    • 2011
  • This paper describes on the study of mitigation technique in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. SCO test was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The rocket motor in SCO test was located in an oven at $50^{\circ}C$ for 7 hours. The temperature was regulated to be elevated at the rate of $3.3^{\circ}C$ per hour. Results showed Type V(Burning) reaction in this SCO test.

  • PDF

A Ignition Test of Gas Turbine Combustor For High Altitude simulation at Low Temperature Condition (가스터빈 연소기 고공환경 모사 시험을 위한 상압/저온 환경에서의 점화 특성 실험)

  • Kim, Ki-Woo;Kim, Tae-Woan;Kim, Bo-Yeon;Lee, Yang-Suk;Ko, Young-Sung;Jun, Yong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.553-556
    • /
    • 2009
  • In this study, ignition tests of a gas turbine combustor were performed to evaluate an ignition loop at low temperature condition. An experimental setup was constructed to simulate low temperature condition with a heat exchanger using dry ice as a coolant. Various low temperature conditions could be created by controlling the amount of air though the heat exchanger. The results showed that ignition limit decreased with air temperature.

  • PDF

A Study on Acceleration Aging Characteristics of B-KNO3 Igniter (B-KNO3 점화제의 가속 노화 특성 연구)

  • Paik, Jong Gyu;Ryu, Byung Tae;Kwon, Mira
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2014
  • This research investigated the aging properties of the $B-KNO_3$ system as the igniter. The $B-KNO_3$ system showed the degradation in ignition properties depending on the method and period of storage. It should be found out the cause of the degradation to predict the reliability of the igniters. The changes of the properties by the degradation after aging tests were analyzed by microstructure analysis, XRD analysis and thermal analysis using DSC. It was found out that the lattice parameters of the $KNO_3$ as the oxidizer in the ignition system was changed into the JCPDS values as the aging time increased. Conclusively, the changes of the crystal structure of oxidizer affected the activation energy increasing as aging time increased.

Technology Trend of Hypergolic Igniter and Rupture Disc (자연발화 점화기 및 파열판 기술 동향)

  • Yoo, Jaehan;Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.76-82
    • /
    • 2013
  • Survey on the hypergolic igniter and its rupture discs for liquid rocket engines was performed. The patents of the igniters for US MC-1 and Russia RD-170 engines and the discs for NASA's space vehicle were analyzed. The types of discs and holders, characteristics related to rupture pressures and working fluids, and ASME standards of the discs were examined. Also, survey on structural analyses of the disc were performed. Typical design features and experimental results of the currently developing igniter by the authors were presented.

A Design of Fire-Command Synchronous Satellite Pyrotechnic Circuit (점화 명령에 동조된 인공위성 파이로테크닉 회로 설계)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.81-92
    • /
    • 2013
  • The satellite includes many release mechanisms such as solar array deployment, antenna deployment, cover to protect contamination in scientific equipment, pyro value of the propulsion subsytem, and bypass device in Li-Ion cell module. A drive the initiators is a critical to the successful mission because the initiators of release mechanism driving by the pyrotechnic circuit is operated in single short. The pyrotechnic circuit has to provide switching network for safety. A typical switching network has defect consisting of high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit is required some form of power conditioning to reduce the peak power demanded from the bus if the initiators are to be fired from the main bus. This paper design a pyrotechnic circuit synchronized to the fire-command to activate the fire switch to overcome use high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit provides a current limited widow pulse for fire current synchronized to the fire-command to insure that fire switch will only carry the current but never switch it. The current limited widow pulse for fire current can be possible to use low current rating and light mass switch in switching network. The current limit function in the pyrotechnic circuit reduces supply voltage to initiator and provides the effect of power conditioning function to reduce peak bus power. The pyrotechnic circuit to apply satellite development on geostationary orbit is verified the function by test in development model.

A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit (저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구)

  • Lee Chun-Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • This study measured the ignition limits of methane-air, propane-air, ethylene-air, and hydrogen-air mixture gases by discharge spark of D.C. power resistive circuit. The used experimental device is the IEC type spark ignition test apparatus, it consists of explosion chamber and supply -exhaust system of mixture gas. Mixture gases (methane-air, propane-air, ethylene-air, and hydrogen-air) were put into explosion chamber of IEC type spark ignition test apparatus, then it was confirmed whether ignition was made by 3,200 times of discharge spark between tungsten electrode and cadmium electrode. The ignition limits were found by increasing or decreasing the value of current. For the exact experiment, the ignition sensitivity was calibrated before and after the experiment in each condition. The ignition limits were found by changing the value of concentration of each gas-air mixture in D.C. 24 [V] resistive circuit. As the result of experiment, it was found that the minimum ignition limit currents exist at the value of methane-air 8.3 [$Vol\%$], propane-air 5.25[$Vol\%$], ethylene-air 7.8 [$Vol\%$], and hydrogen-air 21[$Vol\%$] mixture gases. For each the minimum ignition concentration of gases, the relationships between voltage and minimum ignition current were found. The results are as follows. - The minimum ignition limits are decreasing in the order of methane, propane, ethylene, and hydrogen. - The value of ignition current is inversely proportional to the value of source voltage. - The minimum ignition limit currents increase sharply at more than 2 [A]. The reason is caused by overheating the electrode.

  • PDF