• Title/Summary/Keyword: 점토질 흙

Search Result 26, Processing Time 0.023 seconds

Characteristics of Shear Strength Parameters of Various Soils by Direct Shear Test (직접전단시험에 의한 다양한 시료의 전단강도 특성)

  • Park, Choonsik;Jeong, Jeonggeun
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.584-595
    • /
    • 2018
  • This study conducted direct shear test on about 290 sorts of materials such as sandy soil, clayey soil and gravely soil to present proper standard on shear strength of soil. Shear strength of soil in large scale tends to show that angle of internal friction increases as sand contents grow and it ranges $23.5^{\circ}{\sim}34.9^{\circ}C$ with cohesion of 2.0 kPa~15.7 kPa. Elastic modulus was visibly distinct by load, and which increased approximately 80% as vertical load grows. Angle of internal friction arranging $15.0^{\circ}{\sim}28.6^{\circ}$ on clayey soil decreased as clay contents rises and cohesion increase in regular scale. Elastic modulus tends to increase initial elastic modulus with almost same growing rate. While angle of internal friction on gravely soil indicates $29.9^{\circ}{\sim}36.7^{\circ}$ which hardly shows distinctive features. According to test in detail, cohesion of SW (well-graded sand), SP (poorly-graded sand), SC (clayey sand) and SM (silty sand) indicates value by 94%, 78% and 59% comparing to SC, SW and SP respectively. Angle of internal friction of ML (low-liquid limit silt) and CL (low-liquid limit clay) appears almost same features, and MH (high-liquid limit silt) despite of 88% value of ML. Cohesion among them varies with similar growing rate.

Correlation Between Physical and Compaction Characteristics of Various Soils (다양한 지반의 물리적 특성과 다짐특성 상관성)

  • Park, Choonsik;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • This study, to provide quantitative data related to compaction characteristics, identifies the compaction characteristics of various types of soil samplers, in relation to their particle-size distribution and plasticity degree, and the compaction characteristics of artificially created granular materials, in relation to their A & D compaction. The results of the experiments show as follows. $r_{dmax}$ of clay is less than those of both sand and gravel approximately by 10%. O.M.C of clay has turned out to be greater than sand and gravel approximately by 20% and 30%, respectively. Changes in the compaction characteristics can be observed clearly around 30~60% of sand and 30~50% of passing No.200 sieve. It has also been shown that the compaction characteristics related to LL and PL are similar to each other in changes, and that the compaction characteristics become less clear with higher percent of fine grained soil. The compaction characteristics of the artificially created granular materials and field materials have appeared almost similar to each other. $r_{dmax}$ is less approximately by 30% and O.M.C greater approximately by 20% in A compaction than in D compaction. As $r_{dmax}$ and O.M.C become greater, its rate increases.

Dynamic Properties of Soils at High Amplitude (With Emphasis on Threshold Strain) (흙의 고변형률 진동 특성(한계 변형률을 중심으로))

  • ;Stokoe K.H.Il
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.41-50
    • /
    • 1991
  • This study investigated the variation of the threshold strain and pore water pressure response of the coils at high amplitude vibration using resonant column test. As a result of tests, threshold shear strains of soft clay, clean quartz sand and stiff volcanic deposit were turned out to be 1$\times$10-2%, 1$\times$10-3%, 1$\times$10-4% respectively. Also, threshold shear Strain was found to be changed with confining pressure for the clean quartz sand. An increase of pore water pressure with shear strain was not significant within the shear strain 3~4$\times$10-3%, but it was abruptly increased beyond shear strain 1$\times$10-2%.

  • PDF

A Study on Strength Characteristics of Dredged Soft Clay (준설 연약 점토의 전단강도 특성에 관한 연구)

  • Lee, Song;Yun, Don-Kyu;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.153-166
    • /
    • 1994
  • In this paper, the experimental study on the behavior of the dredged clay was performed by introducing the consolidation teat method using continuous loading. Also a new testing method was examined and the strength of the dredged clay using thin plate was evaluated. The rheological characteristics of the dredged clay are described by the gingham model. The static and rheologic thin plate penetration test is proposed for the shear strength testing method. It is found that both of testing methods are reasonable and have a practicability. Especially, the strength increases for a water content which is less than two times of liquid limit in case of silty soil and clayey soil. About plasticity index, the strength increases rapidly for a value less than 10 for silt, 5 for clay which a water content is normalized by plasticity index of silty soil rather than clayey soil.

  • PDF

Estimation of Geotechnical Characteristics at of the Marine Clay at Inchon International Airport Marine Clay Using Piezocone and Dilatometer Tests (CPTu와 DMT를 이용한 인천국제공항 해성점토의 공학적 특성연구)

  • 김종국;김영웅;최인걸;박영목
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2001
  • 본 연구에서는 2단계 확정예정부지의 일부 원지반에서 수행된 CPTu(piezocone penetration test)와 DMT(dilatometer) 및 실내시험 결과를 바탕으로 흙의 분류, 비배수전단강도 그리고 압밀계수 등의 공학적 특성을 살펴보았다. CPTu와 DMT를 이용한 흙의 분류 결과, 점토층 사이에 얇게 산재한 샌드심(sand seam)층을 보다 정확하게 판정할 수 있었다. 삼축압축시험의 비배수 강도($S_{u}$ )를 기준으로 산정한 콘계수는 CPTu의 경우 $N_{k}$ =18.2를, DMT의 경우 Roque(1988)의 제안식을 이용한 $N_{c}$=6.35로 추정한 비배수전단강도가 비교적 일치하는 것으로 나타났다. 또한 CPTu와 DMT를 이용한 수평압밀계수는 비교적 근사한 것을 알 수 있었다. 그러나, 해성점토사이에 실트, 샌드심이 존재하는 실트질 지반에서의 수평압밀계수가 연직압밀계수보다 상당히 크며, 압밀계수비($C_{h(Oedo, CPTu, DMT)}$ /$C_{v Oedo}$ )는 4.3~10.2로 큰 차이를 보이고 있다.

  • PDF

Flow Tests of Sandy-Clay Column due to Increasing Water Content and Their Simulation Using Particle Method (함수비 증가에 따른 모래질 점토기둥의 붕괴실험 및 입자법 시뮬레이션)

  • Park, Sung-Sik;Chang, Han
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.11
    • /
    • pp.25-37
    • /
    • 2014
  • Clay or sand does not exist alone but various sizes of soil are mixed in the field. In this study, the effect of water content on large deformation of such mixed soils is studied by using soil column tests and a particle method. A soil column with 7 cm in diameter and 13 cm in height, which was made out of kaolinite with sand content of 0, 10, 25, or 50%, was tested for large deformation. Its deformation was monitored with time. While increasing its water content from 40, 60, to 80%, a total of 12 types of soil column tests were carried out. The particle method simulated their deformation with time. A maximum plastic shear modulus, which was a function of undrained shear strength and plasticity index for soils with different water contents, was associated with soil viscosity to simulate large deformation of soil column. When a sand content of soil column was constant, the deformation of soil column increased with increasing water content. When a water content of soil column was constant, large deformation occurred with increasing the sand content. The maximum deformation, which was 22 cm in diameter, was observed in the case of water content of 80% and sand content of 50%. The particle method was able to relatively well simulate such large deformation and stress change of soils.

The Effect of Cyclic Load Frequency on the Liquefaction Strength of Fine Containing Sands (세립분을 포함하는 모래질 흙의 액상화강도에 미치는 재하속도의 영향)

  • 황대진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.119-132
    • /
    • 1994
  • Undrained cyclic triaxial tests were performed on silt contained in the sand in order to investigate the effect of silt contents on the liquefaction strength and shear characterist ifs of the sand. As the result of this experiment, the weakest percentage of silt contained in the sand was 30% for all the relative density considered in the test. Also, the same bests were performed to find the effect of cyclic speed applied ranging from 0.1Hz to 5Hz on the liquefaction strength. The more the silt is contained in the sand, the greater the liquefaction strength was affected by cyclic speed, While the silt -containing sand was far less influenced by the cyclic speed than clay containing sand. These results are believed to be caused by the change of pore water pressure of the effective stress path.

  • PDF

Soil Layer Distribution and Soil Characteristics on Dokdo (독도의 토층 분포 및 토질 특성)

  • Kyeong-Su Kim;Young-Suk Song;Eunseok Bang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.475-487
    • /
    • 2023
  • We surveyed the distribution of soil layers on Dongdo and Seodo of Dokdo and measured the physical properties of the soils. To investigate the distribution of soil layers, the soil depth was measured directly in accessible locations, and visual observations of inaccessible locations were carried out using drones and boats. Soil depths ranged from 3 to 50 cm, and most soil layers had depths of 10~20 cm. Based on these results, a map of the soil layer was drawn using 5 cm intervals for soil depth. To analyze the soil characteristics of Dokdo, soil samples were collected from 13 locations on Dongdo and 13 locations on Seodo, in consideration of various geological settings. According to the results of grain size distribution tests, sand contents were >75%, and soil from Seodo contained more gravel-sized particles than that from Dongdo. Using the unified soil classification system (USCS) and textural classification chart of the United States Department of Agriculture (USDA), most of the soil samples from Dokdo are classified as sand, and some are classified as loamy or clayey sand. In addition, well-graded loamy or clayey sands are more common in Dongdo, and poorly graded sands with gravel are more common in Seodo. These results are expected to be important for studying soil characteristics on Dokdo.

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

Consolidation Characteristics of Songdo Area in Incheon (인천 송도지역 지반의 압밀특성)

  • Kim, Dong-Hee;Hong, Sung-Jin;Lee, Woo-Jin;Ko, Seong-Kwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.21-33
    • /
    • 2010
  • In this paper, the consolidation and the permeability characteristics of Songdo were evaluated based on the laboratory and field tests. The test results indicate that silty clay layer above approximately E.L-15 m are consolidation layer, and sand layers embedded in consolidation layers are drainage layers. Consolidation layer was overconsolidated state before the reclamation work; however, it transferred to normalized state after the reclamation work. In addition, the average and the range of consolidation properties and magnitude of anisotropy of coefficient of consolidation were evaluated according to the soil types such as clay, silty, and clayey silt since these properties are sensitive to soil types. These analysis results can be used as preliminary design parameters of consolidation and permeability m Songdo area.