• Title/Summary/Keyword: 점탄성재

Search Result 71, Processing Time 0.021 seconds

Viscoelastic Behaviors of Geosynthetic-Reinforced Asphalt Pavements (섬유보강 아스팔트 포장의 점탄성 거동연구)

  • In, Sik-Youn;Kim, Hyung-Bae;Ann, Sung-Sun;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.37-45
    • /
    • 2004
  • The asphalt concrete pavement takes various advantages of better riding quality, serviceability and easier maintenance. At the same time, it addresses a weak point of the premature failures due to rapid increasement of traffic volume, heavy vehicles and high temperature in summer. It increases the expenditure of maintenance and repair. In order to improve the performance of asphalt pavement avoiding this premature failure, the use reinforcements with geosynthetics have been considered. Geosynthetics are known as an effective reinforcement to restrain fatigue and reflective cracks in asphalt pavements. In this study, a comprehensive parametric study is conducted to capture the efficiency of geosynthetic-reinforcements using viscoelastic properties of the asphalt concrete(AC) layer. The investigated parameters were reinforcement location, AC layer thickness, temperature distribution across the AC layer and modulus of AC and base layer. As a result of observations, that reinforced asphalt concrete could be used effectively for improving resistance against fatigue cracks and permanent deformation. Especially, when a geogrid was placed at the interface between the asphaltic base and the subbase, tensile stress in the horizontal direction was significantly reduced.

  • PDF

촉감 메카니즘 해석을 위한 손끝의 동적 점탄성 반응

  • 한은경;권영하
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.280-284
    • /
    • 1998
  • 신체 보호와 체온유지를 담당하는 피부는 인체 최대의 감각기관이다. 피부에는 온각, 냉각, 압력, 통증, 촉각, 진동 둥을 느끼는 외수용감각기들이 산재되어 있다. 그 중에서 촉감은 건축 자재, 필기구 재질, 자동차 내장재, 의류 원단과 안감 등 신체와 접촉하는 소재에 있어 제품의 질을 결정짓는 중요한 요소이다. 특히 섬유에서의 질감이란 경제적인 면과 직결되는 문제를 안고 있다.(중략)

  • PDF

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.

Study of the Measurement of Young's Modulus and Loss Factor for a Viscoelastic Damping Material Using a Multi Degree of Freedom Curve Fitting Method and RKU Equation (다자유도 곡선 맞춤법과 RKU 기법을 이용한 점탄성 감쇠재의 탄성 및 손실계수 추정방법 연구)

  • Min, Cheon-Hong;Park, Han-Il;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.67-72
    • /
    • 2011
  • Offshore structures, such as a platform, a buoy, or a floating vessel, are exposed to several dynamic loads, and viscoelastic damping material is used to reduce the vibration of offshore structures. It is important to know the properties of viscoelastic materials because loss factor and Young's modulus of the viscoelastic damping material are dependent on frequency and temperature. In this study, an advanced technique for obtaining accurate loss factor and Young's modulus of the viscoelastic damping material is introduced based on a multi degree of freedom curve-fitting method and the RKU (Ross-Kerwin-Ungar) equations. The technique is based on a modified experimental procedure from ASTM E 756-04. Loss factor and Young's modulus of the viscoelastic damping material are measured for different temperatures by performing the test in a temperature-controlled vibration measurement room where temperature varies from 5 to 45 degrees Celsius.

A Study on Optimum Design of an Unconstrained Damping Steel Plate by Using Viscoelastic Damping Material (점탄성 제진재를 이용한 비구속형 제진강판의 최적설계에 관한 연구)

  • 유영훈;양보석
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 1995
  • Optimum design of a viscoelastic damping layer which is unconstrainedly cohered on a steel plate is discussed from the viewpoint of the modal loss factor. Themodal loss factor is analyzed by using the energy method to the base steel plate and cohered damping layer. Optimum distributions of the viscoelastic damping layer for modes are obtained by sequentially changing the position of a piece of damping layer to another position which contributes to maximizing the modal loss factors. Analytical procedure performed by using this method simulated for 3 fundamental modes of an edge-fixed plate. Simulated results indicate that the modal loss factor ratios can be increase by as much as 210%, or more, by optimizing the thickness distribution of the damping layer to two times of the initial condition which is entirely covered. Optimum configurations for the modes are revealed by positions where added damping treatments become most effective. The calculated results by this method are validated by comparison with the experimental results and the calculated results obtained by the Ross-Ungar-Kerwin's model in the case of the layer is uniformly treated over the steel plate.

  • PDF

Passive Damping Enhancement of Composite Beam Using Piezo Ceramic Connected to External Electrical Networks (외부 회로가 연결된 압전 세라믹을 이용한 복합재 보의 수동 감쇠 개선)

  • Yang, Seung-Man;Kim, Do-Hyung;Han, Jae-Hung;Lee, In
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • The piezoelectric material connected to external electric networks possesses frequency dependent stiffness and loss factor which are also affected by the shunting circuit. The external electric networks are generally specialized for two shunting circuits: one is the case of a resistor alone and the other is the combination of a resistor and an inductor. For resistive shunting, the material properties exhibit frequency dependency similar to viscoelastic materials, but are much stiffer and more independent of temperature. Shunting with a resistor and inductor introduces an electrical resonance, which can change the characteristics of structural resonance optimally in a manner analogous to a PMD (proof mass damper). Passive damping enhancement of composite beam using piezoelectric material connected to external electrical networks is achieved and presented in this paper.

  • PDF

An Experimental Study of Nonlinear Viscoelastic Bushing Model for Torsional Mode (비선형 점탄성 부싱모델의 회전방향모드에 대한 실험적 연구)

  • Lee, Seong-Beom;Lee, Sung-Jae;Jun, Sung-Chul;Song, Dong-Ryul;Jeong, Jae-Young;Park, Chan-Seok;Lee, Woo-Hyun
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • A bushing is a device used in automotive suspension systems to reduce the load transmitted from the wheel to the frame of the vehicle. A bushing is a hollow cylinder, which is bonded to a solid steel shaft at its inner surface and a steel sleeve at its outer surface. The relation between the force and moment applied to the shaft and the relative deformation and rotational angle of a bushing exhibits features of viscoelasticity. Since a moment-rotational angle relation for a bushing is important for multibody dynamics numerical simulations, the simple relation between the moment and rotational angle has been derived from experiment. It is shown that the predictions by the proposed moment-rotational angle relation are in very good agreement with the experimental results.

초음파 Fractography에 의한 파괴속도의 정밀측정을 위한 최적주파수 선정에 관한 연구

  • 한응교;이범성;고교청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.119-126
    • /
    • 2001
  • 유리와 같이 취성이 큰 재료의 파단면을 주의하여보면 반원형의 곡선이 이따금씩 여러개 나타나 있는 것을 볼 수 있다. 이것은 진행 중에 있는 균열이 어떠한 부분으로부터 나온 음파(횡파)와 만났을 때 일어나는 흔적으로 Wallner선 이라고 한다. 초음파 Fractography는 파괴 시험시 강력한 초음파를 사용하여 파단면에 이와 같은 Wallner 선을 인공적으로 발생시켜, 파면해석을 통하여 파괴속도등 파괴연구에 필요한 정보를 얻는 수법이다. 이 수법은 유리와 같은 비정질 탄성태의 파괴속도 측정을 위해 Kerkhof에 의해 최초로 고안되었으며, 수지와 같은 점탄성재료에 대해서는 Takahashi에 의하여 PMMA(Polymethy1 Methacrylate)재에 강력한 초음파를 사용하여 그 가능성이 제기된 이후 PMMA와 EPOXY재등의 점탄성재료의 파괴속도측정과 파괴강성등의 측정에 본격적으로 연구되기 시작하였다.

Dynamic Analysis of Viscoelastic Composite Thin-Walled Blade Structures (점탄성-복합재 박판 블레이드 구조물의 진동 해석)

  • Shin, Jae-Hyun;Na, Sung-Soo;Park, Chul-Hue
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1684-1689
    • /
    • 2003
  • This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF