• Title/Summary/Keyword: 점성 흐름

Search Result 91, Processing Time 0.029 seconds

Critical Reynolds Number for the Occurrence of Nonlinear Flow in a Rough-walled Rock Fracture (암반단열에서 비선형유동이 발생하는 임계 레이놀즈수)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Fluid flow through rock fractures has been quantified using equations such as Stokes equations, Reynolds equation (or local cubic law), cubic law, etc. derived from the Navier-Stokes equations under the assumption that linear flow prevails. Therefore, these simplified equations are limited to linear flow regime, and cause errors in nonlinear flow regime. In this study, causal mechanism of nonlinear flow and critical Reynolds number were presented by carrying out fluid flow modeling with both the Navier-Stokes equations and the Stokes equations for a three-dimensional rough-walled rock fracture. This study showed that flow regimes changed from linear to nonlinear at the Reynolds number greater than 10. This is because the inertial forces, proportional to the square of the fluid velocity, increased enough to overwhelm the viscous forces. This tendency was also shown for the unmated (slightly sheared) rock fracture. It was found that nonlinear flow was caused by the rapid increase in the inertial forces with increasing fluid velocity, not by the growing eddies that have been ascribed to nonlinear flow.

Sensitivity Analysis of Debris Flow Simulation in Flo-2D Using Flow Discharge and Topographic Information (유량과 지형조건에 따른 Flo-2D에서의 토석류 확산 민감도 분석)

  • Kim, Namgyun;Jun, Byonghee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.547-558
    • /
    • 2022
  • In August 2020, a debris flow occurred in Gokseon, Jeollanam-do, that resulted in the death of five residents. In this study area, high-resolution 0.03 m topographic information was generated through photogrammetry, and the amount of soil movement/loss was measured. In addition, sensitivity analysis was performed for flow depth, flow velocity, and debris flow area with the program Flo-2D using the difference in simulation parameter that discharge and topographic information. Wth increasing debris flow input discharge, increases were seen in flow depth, flow velocity, and debris flow area, as ell as in the gap in results from high-resolution topographic information and low-resolution topographic information. Also, when high-resolution topographic information was used, the results were similar to the actual (measured) flow direction of the debris flow. Therefore, the application of high-resolution topographic information increases the accuracy of the debris flow analysis results compared with low-resolution information. Results could be further imporved in the future by considering geological information such as yield stress and viscosity.

Spot marking of the multilayer thin films by Nd:YAG laser (Nd:YAG 레이저에 의한 다층 박막의 미소 점 마킹)

  • Kim, Hyun-Jin;Shin, Yong-Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.361-368
    • /
    • 2004
  • We separated the multilayer structure of CD-R(compact disk-recordable) and investigated optimal spot marking conditions and physical and chemical transitions in response to various laser beam energh levels. Spot marking(80 ${\mu}{\textrm}{m}$ spot size) was produced on the surface of each layer using a Q-switched Nd:YAG laser between 27 mJ and 373mJ. By investigating resulting pit formation with Optical Microscopy(OM) and Optical Coherence Tomography(OCT), we analyzed the formation process of spot marking in the multilayer structure of different chemical composition. The localized heating of the substrate in the multilayer thin film caused the short temporal thermal expansion, and absorbed optical energy between reflective and dye interfaces melted dye and increased the volume. During the cooling phase, formation of pit and surrounding rim can be explained by three distinct processes; effect of surface tension, evaporation by spontaneous temperature increase due to laser energy, and mass flow from the recoil pressure. Our results shows that the spot marking formation process in the multilayer thin film is closely related to the layers' physical, chemical, and optical properties, such as surface tension, melt viscosity, layer thickness, and chemical composition.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Ability to Resist Chloride Ion Penetration and Dry Shrinkage Evaluation of Magnesium Phosphate Ceramics (인산마그네슘 세라믹의 염소 이온 투과 저항성 및 길이변화 특성에 관한 성능 평가)

  • Ko, Jeong-Won;Yang, Wan-Hee;Park, Dong-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.341-348
    • /
    • 2017
  • The performance degradation of concrete pavement by winter deicer is very serious in Korea, and its maintenance and rehabilitation brings a high expense. Therefore, a suitable method for rehabilitation of such concrete pavement and repair material of proper performance are required. In this study, the properties of compressive strength, ability to resist chloride ion penetration, and properties of dry shrinkage of magnesium phosphate ceramics were assessed to evaluate its applicability as a repair material for concrete pavement in Korea. As a result, the mortar flow showed a normal level of 190 mm, but the viscosity was high and the self-flow ability was poor. The setting time was 12 minutes, leading very rapid-hardening, and thus a prompt work was required. The compressive strength of mortar was 38.4MPa in 2 hours, 73.8MPa in 24 hours, and 111.0MPa in 28 days, showing a significant level. As a result of the test to chloride ion penetration resistance, mortar showed 143 Coulombs, and concrete showed 172.6 Coulombs, which fell under very low level. The drying shrinkage of MPC concrete in 40 days was below $60{\times}10-6$, and comparing with normal cement concrete, it showed the level below 1/10 of other concrete to secure an excellent volume stability. As above, magnesium phosphate ceramics has excellent strength performance, chloride ion penetration resistance, and volume stability, and this in the future shall be used in construction under the consideration of working time or workability, requiring further improvement for such performance.

Studies on Thermal Oxidation of Soybean Oil -I. Changes in Some Chemical and Physical Properties of a Soybean Oil during Thermal Oxidation- (대두유의 가열산화중의 특성변화 -제 1 보 : 가열산화중의 대두유의 일부 화학적, 물리적 성질의 변화-)

  • Shin, Ae-Ja;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.257-264
    • /
    • 1982
  • In the present stud changes of some chemical and physical properties of a soybean oil, aerated at 120 ml/min through a porous gas distributor and oxidized at $45^{\circ}C{\sim}180^{\circ}C$, was investigated. The results of the study were as follows: The peroxide, thiobarbituric acid, and iodine value of the soybean oil which was aerated at 120 ml/min increased rapidly as oxidation temperature exceeded over $80^{\circ}C$. The acid value of the oil increased very rapidly as the oxidation temperature passed over $160^{\circ}C$. The content of the unsaturated fatty acid of the oil decreased considerably as the oxidation temperature exceeded over $80^{\circ}C$, whereas that of the saturated fatty acid did not change appreciably. This related well to the changes of the iodine value of the oil subjected to the same experimental conditions. The viscosity and refractive index of the oil increased rapidly as the oxidation temperature passed over $180^{\circ}C$. The following linear relationship hold for the viscosity and refractive index of the oil in the present study. $$V=Aexp({\frac{E}{RT}})$$ where V=viscosity(poise), A=constant, E=activation energy for viscous flow, R=gas constant, T=oxidation temperature$(^{\circ}K)$. The following relationship also hold for the viscosity and refractive index$({n^{20}}_D)$ of the oil at the present experimental conditions. $${n^{20}}_D=1.4614+7.333{\times}10^{-5}t+2.9612{\times}10^{-3}\;InV$$ where t=temperature$(^{\circ}C)$ at which the viscosity was measured.

  • PDF

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

Rheological Properties of Bitumen for Reducing Negative Skin Friction (말뚝 부마찰력 저감용 역청재료의 유변학적 특성)

  • 박태순;윤수진
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.191-200
    • /
    • 2003
  • This paper presents the rheological properties of bitumen for reducing negative skin friction. The bitumen has been widely used due to both the cost and construction effectiveness. Also, it is well known that the use of bitumen for reducing negative skin friction renders the best results among other available methods. Three different modified bitumens were used for the testing programs. The physical tests include the penetration, the softening point and penetration index. The rheological tests include phase angle, complex modulus, creep tests and flow tests. The tests were conducted at four different temperatures(15, 30, 45 and 6$0^{\circ}C$) in order to simulate the field condition. The test results were analyzed using the phase angle, G$^*$/sin $\delta$, creep compliance and shear viscosity. The result of tests showed that the phase angle increased and G$^*$/sin $\delta$ decreased with the increase of temperature. The creep compliance increased as the loading time increased. The difference of the creep compliance is detected as the time and temperature are varied, however, the difference of the shear viscosity is not significant among the samples tested in this study. The rheological properties of the bitumen also showed that the physical testing method and the temperature dependant testing method are somewhat limited to showing and expressing the full rheological properties of the modified bitumen. The introduction of the time and the temperature dependent testing method is necessary to find out the full rheological properties of the modified bitumen.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

Studies on the Fusibility of Fly Ash-Flux Mixtures (융제 첨가 비산회의 융융성 연구)

  • Yang, Hyun S.;Lee, Kyu C.;Park, Chu S.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.985-993
    • /
    • 1997
  • The effects of CaO and MgO fluxes on the fusibility of fly-ashes were investigated for two different fly-ashes. A fusion temperature of mixtures of selected fly-ashes and fluxes were measured by the ASTM test method(D1857) and the differential thermal analysis. IDT of these samples added CaO and MgO as a fluxing agent dropped in the range of 114 to $294^{\circ}C$ and 80 to $224^{\circ}C$, respectively. Compared with ash fusion temperature to Base/Acid ratio, the lowest ash fusion temperature were measured in the range of 0.7 to 0.8 for CaO-fly ash mixtures and 0.3 to 0.4 for MgO-fly ash mixtures. As a result, MgO in small addition acted as a more effective flux than CaO. A conventional Base/Acid ratio and liquidus point of ternary diagram did not show a good correlation with ash fusion temperature for these samples. In pure fusion temperature of fly ash-mixtures, DTA was better method than ASTM test method.

  • PDF