• Title/Summary/Keyword: 점성유체

Search Result 394, Processing Time 0.024 seconds

A Multiphase Flow Modeling of Gravity Currents in a Rectangular Channel (사각형 수로에서 중력류의 다상흐름 수치모델링)

  • Paik, Joongcheol;Kim, Byung Joo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.98-98
    • /
    • 2019
  • 중력류 또는 밀도류는 주변 유체에 비해 상대적으로 밀도가 큰 유체가 밀도차에 의한 추진력으로 흐르는 것이다. 중력류의 수치모델링에는 두 가지 어려움이 있다. 즉, 적합한 지배방정식을 구성하여 적용하는 것 그리고 난류의 영향을 합리적으로 반영하는 것이다. 기존 중력류 해석을 위한 지배방정식들은 유체의 연속방정식과 운동량 방정식 그리고 밀도 또는 농도의 이송방정식을 조합하여 구성된다. 이들 지배방정식을 이용한 연구들은 대부분 두 유체 사이의 밀도차가 충분히 작아서 밀도 변동(variations)의 영향은 오로지 부력항에서만 유지된다는 Boussinesq 근사에 근거를 둔다. 그리고 이송방정식에서 밀도 또는 농도의 확산계수을 점성계수의 함수로 표현하기 위해서 Schmidt 수를 이용한다. 수치모델링에서 Schimdt 수는 상수값을 적용하지만, 이 값은 밀도의 연직방향 경사에 근거한 부력빈도(buoyancy frequency)와 난류량의 따라 큰 차이를 보이는 것으로 알려져있다. 한편, 표준 통계학적 난류모델과 벽함수를 적용한 수치모델링은 초기 중력에 의해서 무너지는(slumping) 단계를 넘어 관성력으로 추진되는 단계와 점성 효과가 지배적인 단계에서는 정확도에 현저히 낮아지기 때문에 대부분 큰와모의(large-eddy simulation, LES) 또는 DNS(direct numerical simulation)수준의 고해상도(high-resolution) 해석기법을 적용하여 공학적인 문제에 적용하는 데는 한계가 있다. 이 연구에서는 Boussinesq 근사와 Schmidt 수를 사용하지 않으며, LES 보다 적용이 용이한 DES (detached-eddy simulation)기법을 조합한 다상흐름 수치모델을 적용하여 중력류를 해석을 시도하였다. 수치해석결과를 실험값과 함께 기존 수치모델링 기법으로 구한 수치해와 비교분석하여 이 연구에서 개발 및 적용된 수치모델링 기법의 적용성을 평가한다.

  • PDF

Studies on the Rheological Property of Korean Noodles -II. Mechanical Model Parameters of Cooked and Stored Noodles- (한국 재래식 국수류의 유체 변형성에 관한 연구 -제 2 보 : 삶음시간과 저장기간에 따른 기계적 모델 상수들의 변화-)

  • Lee, Cherl-Ho;Kim, Cheol-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.295-301
    • /
    • 1983
  • The mechanical models representing the theological property of traditional Korean noodles; i.e. wheat flour noodle and wheat-sweet potato starch noddle, were investigated from the data obtained by creep and creep recovery test using a tensile tester. The rheological behavior of the noodle products could be expressed by the 6-elements Voigt model. The instantaneous elasticity, retarded elasticity, retardation time, retarded viscosity and Newtonian viscosity of the noodle products were evaluated. With the increasing cooking time, 4-elements Burger's model was applicable to represent the mechanical behavior of wheat-sweet potato starch noodle.

  • PDF

A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis (협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구)

  • 정삼두;김창녕
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, blood flow in a carotid artery supplying blood to the human's brain has been numerically simulated to find out how the blood flow affects the genesis and the growth of atherosclerosis and arterial thrombosis. Velocity Profiles and hemodynamic parameters have been investigated for the carotid arteries with three different stenoses under physiological flow condition. Blood has been treated as Newtonian and non-Newtonian fluid. To model the shear thinning properties of blood for non-Newtonian fluid, the Carreau-Yasuda model has been employed. The result shows that the wall shear stress(WSS) increases with the development of stenosis and that the wall shear stress in Newtonian fluid is highly evaluated compared with that in non-Newtonian Fluid. Oscillatory shear index has been employed to identify the time-averaged reattachment point and this point is located farther from the stenosis for Newtonian fluid than for non-Newtonian fluid The wall shear stress gradient(WSSG) along the wall has been estimated to be very high around the stenosis region when stenosis is developed much and the WSSG peak value of Newtonian fluid is higher than that of non-Newtonian fluid.

Prediction of the Ability of a Viscous Fluid Damper with Respect to Change of the Size of the Damper (점성 유체 감쇠기의 크기 변화에 따른 성능 변화 예측)

  • Park, Hwa-Yong;Yun, Jong-Min;Yoo, Seong-Hwan;Kim, Chang-Yeol;Lee, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • To reduce the vibration in industrial settings, the viscous fluid dampers have been widely used. Since the damper shows a viscoelastic behavior, many methods to predict the behavior have been investigated. But the methods did not consider a change of damper size that is important factor for practical design engineer. In this study, to predict a change of damper ability with respect to a change of damper size, the dynamic experiment were conducted with fixed aspect ratio and gap. The damping coefficient at zero frequency was computed through theoretical and experiment approach in order to fit the experimental results using fractional derivative Maxwell model.

Numerical Model of Propulsive Behavior of a Rotating Spring in Viscous Fluid (점성유체 중에 회전하는 스프링의 추진적 거동에 관한 수치해석 모델)

  • Choi, Won Yeol;Suh, Yong Kweon;Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.497-504
    • /
    • 2015
  • In this paper, we study the propulsive behavior related to the flagellar motion of bacteria using a spring model. A commercial program was used to conduct simulations, and we verified the numerical technique by setting an additional rotating domain and conducting a parametric study. The numerical results are in good agreement with slender-body theory, although overall, they are not in agreement with resistive-force theory. We confirm the effect of the rotational velocity, pitch, helical radius, fluid viscosity, and, in particular, the distance from the wall on the propulsion of the spring.

Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations (Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석)

  • Kim, C.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

VISCOUS FLOW CALCULATIONS OF HELICOPTER MAIN ROTOR SYSTEM IN FORWARD FLIGHT (전진 비행하는 헬리콥터 주로터 시스템의 점성 유동 해석)

  • Jung, M.S.;Kwon, O.J.;Kang, H.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.31-38
    • /
    • 2009
  • In the present study, viscous flow calculations of helicopter main rotor system in forward flight were made by using an unstructured hybrid mesh solver. Each rotating blade relative to the cartesian frame was simulated independently by adopting unstructured overset mesh technique. For the validation of the present method, calculations for the Caradonna-Tung non-lifting forward flight and the AH-1G main rotor system in forward flight were made. Additional computation was made for the UH-60A rotor in forward flight. Reasonable agreements were obtained between the present results and the experiment.

  • PDF

Vibration Control of Hybrid Smart Structure Using ER Fluids and Piezoelectric Ceramics (전기점성유체와 압전세라믹을 이용한 복합지능구조물의 진동제어)

  • 윤신일;박근효;한상보
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.612-618
    • /
    • 2003
  • A hybrid vibration control scheme using ER fluid and PZT patches is proposed. Dynamic characteristics of the beam embedded with the ER fluid can be controled by changing the strength of the electric field applied on the ER fluid, thus provides a mean to avoid the resonance. It was found that active vibration control of the structure embedded with ER fluid failed to suppress the vibration excited with broad band frequency due to the limited change of the dynamic characteristics of the structure. To compensate this limited effect of the control scheme with ER fluid alone, PPF control using PZT patches as sensors and actuators is added to construct a hybrid controller. Experimental results suggests that proposed hybrid controller is effective to suppress the additional resonance vibration that appears when each controller is used alone.

A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid (자기점성유체를 이용한 가변감쇠 마운트의 모델화)

  • 안영공;양보석;삼하신
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.141-146
    • /
    • 2001
  • This paper deals with an application of Magneto-Rheological (MR) fluid to a small size mount for precision equipment of automobiles. MR fluid is known as a class of functional fluids with controllable apparent viscosity of fluid by the applied magnetic field strength. A typical MR fluid is a suspension where pure iron particles of 1-20 (m in diameter are dispersed in a liquid such as mineral oil or silicone oil, at the concentration of 20 - 40 vol%. Electro magnetic coil is installed at the bottom of a variable-damping mount filled with MR fluid, and performance of the mount was investigated experimentally. Furthermore, the Properties of the MR Mount on experimental study were explained analytically by mechanical model of the MR mount.

  • PDF

Theoretical Analysis for the Measurement of Viscosity and Shear Modulus of Viscoelastic Fluids by Using a Quartz Crystal Oscillator (수정진동자를 사용한 점탄성 유체의 점성계수와 전단 탄성계수 측정에 관한 이론해석)

  • Suh, Yong-Kweon;Kim, Young-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.487-496
    • /
    • 2008
  • Quartz crystal oscillator is frequently used in measuring a very small amount of mass attached to or adsorbed on the surface of an electrode on the quartz plate. The physical principle is that the resonance frequency of the shear vibration of the quartz caused by an applied electric field is a function of the mass. Recently, effort has been tried to measure physical properties of viscoelastic fluids, such as viscosity and shear modulus. This paper presents useful formula that can be used in estimating the properties of viscoelastic fluids. Important finding in this analysis is that the formula can produce multiple values for the physical properties of the viscoelastic materials.