Journal of the Korean Data and Information Science Society
/
제10권1호
/
pp.29-36
/
1999
분할표 분석에서 승산비 (odds ratio)에 대한 추론은 중요하다. 이에 대한 정확한 추론은 비중심초기하(noncentral hypergeometric) 분포의 누적확률등의 계산이 요구되어 표본의 크기가 클 경우 많은 양의 계산과 계산시간이 요구되므로 StatXact 등의 프로그램을 이용하는 것이 일반적이다. 본 논문에서는 정확한 추론에 대한 대안적 방법으로 안부점 근사(saddlepoint approximation)의 결과를 이용한 점근적 추론법을 제시하였다. 이 방법은 비교적 소표본의 경우에도 정확한 추론의 결과와 일치하며, 기존의 정규근사를 이용한 방법에 비해 매우 뛰어난 정확도를 유지함을 예제를 통해 확인하였다.
Communications for Statistical Applications and Methods
/
제5권2호
/
pp.477-489
/
1998
위험률 변화점모형에 대해 변화점의 최우추정을 고려하였다. 추정량의 점근분포 및 붓스트랩 분포의 성질을 알아보고 변화점의 신뢰구간을 제안한다. 변화점의 위치 및 변화점을 전후하여 위험률의 값에 따라 모의실험을 수행하고 포함확률을 조사하였다. 추정량의 점근분포가 매우 복잡하기 때문에 이를 직접 이용한 변화점의 통계적 추론이 매우 어려운 점을 감안할 때 제안된 방법은 바람직한 대안이 될 수 있다.
Communications for Statistical Applications and Methods
/
제4권2호
/
pp.533-540
/
1997
일반화 감마분포(generalized gamma distribution)에서 지표모수(index parameter)에 대한 추론은 생존시간(lifetime)과 관련한 모형의 선택문제에서 매우 중요하다. 이에 대한 정확한(exact) 추론법은 알려져 있지 않다. 본 연구에서는 이에 대한 점근적(asymptotic) 검정법으로 소표본에서도 우도비 검정에 비해 효율이 뛰어난 Bartlett 검정을 제안하고, 이의 요율적 수행을 위한 대체 모형으로 부터의 누율계산(cumulant computation) 법을 제시하였다. 또한 실제자료에 대해 본 논문에서 제시한 누율계산과정을 이용하여 Bartlett 검정을 실시한 결과 기존의 우도비 검정과는 상당히 큰 차이가 남을 확인하였다. 따라서 모형의 선택 등의 문제에서 제안된 방법은 소표본의 경우에 더욱 효율적이라 할 수 있다.
본 논문에서는 1차 자기회귀모형에서 자기회귀계수에 대한 여러 가지 추정량들의 분포함수에 대한 근사적추론 방법에 대해 연구하였다. 이차형식에 대한 안장점근사의 결과를 이용한 이 근사법은 여러 형태의 추정량들에 대해 근사분포의 유도과정이 불필요하며, 소표본은 물론 통계적 추론의 주요 관심영역에서의 근사정도가 매우 뛰어난 장점을 가지고 있다. 모의실험을 통해 Edgeworth근사를 비롯한 기존의 여러 근사법보다 효율이 뛰어남을 확인하였다.
이변량 정규분포의 상관계수 $\rho$에 대한 검정 및 신뢰구간을 구하는 모수적 방법으로서 Fisher의 z 변환과 해당하는 점근적 분포가 널리 쓰이고 있다. 본 연구에서는 이에 대한 대안으로서 직교변환과 F 분포를 활용하는 방법을 제시한다. 후자의 방법이 전자와 비교하여 사실상 대등하면서도 설명은 오히려 쉬우므로 통계학 교육에 더 적합하다고 생각한다. 또한, 시험적으로, $H_0$:$\rho$=$\rho_0$에 대한 모수적 임의화 검정법을 제안한다.
통계적 추론에 사용되는 많은 통계량들은 평균벡터의 평활함수의 형태로 표현이 가능하다. 본 연구에서는 이들 통계량들의 분포함수에 대한 안부점근사법을 제시하였다. 이 방법은 Na(1998)에서 제시된 일반적 통계량의 분포함수에 대한 안부점근사법이 평균벡터의 평활함수모형에 특히 유용하게 사용될 수 있음을 보인 것이다. 이 근사법은 정규근사에 비해 근사의 정도가 뛰어나며, 특히 통계량의 꼬리부분의 확률에 대해서도 정확도가 그대로 유지되는 장점이 있어 정밀한 추론이 요구되는 많은 문제에 효과적으로 사용될 수 있다. 모의 실험에 사용할 평균벡터의 평활함수 모형으로는 스튜던트화 분산을 고려하였다.
단순하고 스테이블한 머징알고리즘의 비교횟수와 관련된 worst case 복잡도를 분석한다. 복잡도 분석을 통해 소개되는 알고리즘이 m 과 n, $m{\leq}n$ 사이즈의 두 수열에 대해 O(mlog(n/m))의 비교횟수를 요구하는 사실을 증명한다. 그래서 병합에 있어서의 하계가 $\Omega$(mlog(n/m))이라는 사실로부터 우리의 알고리즘이 비교횟수와 관련해 점근적 최적 알고리즘에 해당함 을 추론가능하다. worst case 복잡도 증명을 위해 모든 입력수열로 구성된 정의구역을 두개의 서로소인 집합으로 나눈다. 그런 후 서로소인 각각의 집합으로 부터 특수한 subcase를 구별한 후 이들 subcase 각각에 대해 점근적 최적성을 증명한다. 이 증명을 바탕으로 나머지 모든 경우에 대한 최적성 또한 추론 또는 증명 가능함을 소개한다. 이로써 우리는 복잡도 분석이 까다로운 알고리즘에 대해 투명한 하나의 해를 제시한다.
대부분의 자료는 여러가지 원인으로 인한 특이치로 오염되어 있으며, 이러한 상황에서 신뢰성 있는 추정량을 얻어내고 이에 대한 통계적 추론을 시행하는 것은 중요한 문제이다. 그러나 이제까지 제안된 로버스트 회귀추정량들은 계산상의 어려움과 정규오차모형에서 최소제곱추정량에 비하여 떨어지는 효율성때문에 통계적 추론의 정확성을 확신할 수 없었다. 최근 제안된 Lee(2004)의 가중자기조율회귀추정량(weighted self-tuning estimator, WSTE)은 다른 로버스트 회귀추정량에 비하여 정확한 계산과정과 그에 따른 추정량의 점근적 정규성 및 고붕괴점을 갖는다. 그러나 통계적 추론을 위하여 이제까지 널리 사용해왔던 로버스트 추정량에 기반한 가중최소제곱추정방법(weighted least squares estimator)은 WSTE에서조차 정규오차모형하에서 최소제곱추정량과 동일한 수준의 효율성을 제공해주지 는 못한다. 본 논문에서는 WSTE에 기반한 또다른 통계적 추론 방법을 제안하고, 이 방법을 사용함으로써 정규오차모형 및 대표본에서 보다 정확한 결과를 얻을 수 있음을 몬테칼로 모의실험을 통해 제시하였다.
FLSA는 총변동벌점을 이용해 구간별상수인 평균 구조를 구현하는 벌점모형으로 다중변화점 탐색을 위해 활용되고 있다. 한편, FLSA는 변화점 탐색에 있어서 점근적 일치성이 만족되지 않으므로 잡음의 크기가 0에 가깝게 수렴하는 경우에도 다수의 거짓 변화점이 식별될 수 있다는 단점이 있다. 이 연구에서는 이러한 FLSA의 문제점을 해결하기 위한 사후추론 방법으로 순열검정 방법을 제안한다. 단일변화점 모형과 관련된 순열검정 방법은 Antoch와 Hušková (2001)에 의해 제안된 바 있다. 이 연구에서는 Antoch와 Hušková (2001)의 검정절차를 확장하여 다중변화점 식별에 사용되는 FLSA와 결합함으로써 다중변화점 모형에 적용할 수 있는 순열검정절차를 제안한다. 모의실험 결과, 제안된 방법은 z-검정과 CUSUM 통계량의 극한분포에 기반을 둔 검정방법에 비해 전반적으로 우수하였으며 거짓 변화점의 식별에 유용함을 확인할 수 있었다.
선형시계열모형인 AR(1)모형과 비선형시계열모형인 RCA(1), ARCH(1)모형에서 이상치(Outlier)가 존재할 경우 최소제곱추정량과 M추정량간의 점근상대효율(Asymptotic Relative Efficiency: ARE)을 구하여 두 추정량의 로버스트 성질을 비교·분석하였다. 또한 여러 유계함수(Huber, Tukey, Andrews, Hampel)들을 M추정함수에 적용하여 각각의 유계함수들을 비교·분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.