• 제목/요약/키워드: 점근적 추론

검색결과 15건 처리시간 0.018초

안부점근사를 이용한 승산비에 대한 점근적 추론 (Asymptotic Inference on the Odds Ratio via Saddlepoint Method)

  • 나종화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.29-36
    • /
    • 1999
  • 분할표 분석에서 승산비 (odds ratio)에 대한 추론은 중요하다. 이에 대한 정확한 추론은 비중심초기하(noncentral hypergeometric) 분포의 누적확률등의 계산이 요구되어 표본의 크기가 클 경우 많은 양의 계산과 계산시간이 요구되므로 StatXact 등의 프로그램을 이용하는 것이 일반적이다. 본 논문에서는 정확한 추론에 대한 대안적 방법으로 안부점 근사(saddlepoint approximation)의 결과를 이용한 점근적 추론법을 제시하였다. 이 방법은 비교적 소표본의 경우에도 정확한 추론의 결과와 일치하며, 기존의 정규근사를 이용한 방법에 비해 매우 뛰어난 정확도를 유지함을 예제를 통해 확인하였다.

  • PDF

위험률의 변화점모형에 대한 추론

  • 정광모;한미혜
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.477-489
    • /
    • 1998
  • 위험률 변화점모형에 대해 변화점의 최우추정을 고려하였다. 추정량의 점근분포 및 붓스트랩 분포의 성질을 알아보고 변화점의 신뢰구간을 제안한다. 변화점의 위치 및 변화점을 전후하여 위험률의 값에 따라 모의실험을 수행하고 포함확률을 조사하였다. 추정량의 점근분포가 매우 복잡하기 때문에 이를 직접 이용한 변화점의 통계적 추론이 매우 어려운 점을 감안할 때 제안된 방법은 바람직한 대안이 될 수 있다.

  • PDF

일반화 감마분포에서의 누율계산과 지표모수에 대한 Bartlett 검정

  • 나종화
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.533-540
    • /
    • 1997
  • 일반화 감마분포(generalized gamma distribution)에서 지표모수(index parameter)에 대한 추론은 생존시간(lifetime)과 관련한 모형의 선택문제에서 매우 중요하다. 이에 대한 정확한(exact) 추론법은 알려져 있지 않다. 본 연구에서는 이에 대한 점근적(asymptotic) 검정법으로 소표본에서도 우도비 검정에 비해 효율이 뛰어난 Bartlett 검정을 제안하고, 이의 요율적 수행을 위한 대체 모형으로 부터의 누율계산(cumulant computation) 법을 제시하였다. 또한 실제자료에 대해 본 논문에서 제시한 누율계산과정을 이용하여 Bartlett 검정을 실시한 결과 기존의 우도비 검정과는 상당히 큰 차이가 남을 확인하였다. 따라서 모형의 선택 등의 문제에서 제안된 방법은 소표본의 경우에 더욱 효율적이라 할 수 있다.

  • PDF

자기회귀계수에 대한 소표본 점근추론

  • 나종화;김정숙;장영미
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.209-213
    • /
    • 2005
  • 본 논문에서는 1차 자기회귀모형에서 자기회귀계수에 대한 여러 가지 추정량들의 분포함수에 대한 근사적추론 방법에 대해 연구하였다. 이차형식에 대한 안장점근사의 결과를 이용한 이 근사법은 여러 형태의 추정량들에 대해 근사분포의 유도과정이 불필요하며, 소표본은 물론 통계적 추론의 주요 관심영역에서의 근사정도가 매우 뛰어난 장점을 가지고 있다. 모의실험을 통해 Edgeworth근사를 비롯한 기존의 여러 근사법보다 효율이 뛰어남을 확인하였다.

  • PDF

상관계수에 대한 모수적 추론 : 대안적 방법 (Alternative Method of Parametric Inference for Correlation Coefficient)

  • 허명희;김미경
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.553-561
    • /
    • 1999
  • 이변량 정규분포의 상관계수 $\rho$에 대한 검정 및 신뢰구간을 구하는 모수적 방법으로서 Fisher의 z 변환과 해당하는 점근적 분포가 널리 쓰이고 있다. 본 연구에서는 이에 대한 대안으로서 직교변환과 F 분포를 활용하는 방법을 제시한다. 후자의 방법이 전자와 비교하여 사실상 대등하면서도 설명은 오히려 쉬우므로 통계학 교육에 더 적합하다고 생각한다. 또한, 시험적으로, $H_0$:$\rho$=$\rho_0$에 대한 모수적 임의화 검정법을 제안한다.

  • PDF

평균 벡터의 평활함수모형에 대한 안부점근사 -스튜던트화 분산을 중심으로- (Saddlepoint Approximation to the Smooth Functions of Means Model)

  • 나종화;김주성
    • 응용통계연구
    • /
    • 제14권2호
    • /
    • pp.333-344
    • /
    • 2001
  • 통계적 추론에 사용되는 많은 통계량들은 평균벡터의 평활함수의 형태로 표현이 가능하다. 본 연구에서는 이들 통계량들의 분포함수에 대한 안부점근사법을 제시하였다. 이 방법은 Na(1998)에서 제시된 일반적 통계량의 분포함수에 대한 안부점근사법이 평균벡터의 평활함수모형에 특히 유용하게 사용될 수 있음을 보인 것이다. 이 근사법은 정규근사에 비해 근사의 정도가 뛰어나며, 특히 통계량의 꼬리부분의 확률에 대해서도 정확도가 그대로 유지되는 장점이 있어 정밀한 추론이 요구되는 많은 문제에 효과적으로 사용될 수 있다. 모의 실험에 사용할 평균벡터의 평활함수 모형으로는 스튜던트화 분산을 고려하였다.

  • PDF

단순하고 스테이블한 머징알고리즘 (On a Simple and Stable Merging Algorithm)

  • 김복선;쿠츠너 아네
    • 한국지능시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.455-462
    • /
    • 2010
  • 단순하고 스테이블한 머징알고리즘의 비교횟수와 관련된 worst case 복잡도를 분석한다. 복잡도 분석을 통해 소개되는 알고리즘이 m 과 n, $m{\leq}n$ 사이즈의 두 수열에 대해 O(mlog(n/m))의 비교횟수를 요구하는 사실을 증명한다. 그래서 병합에 있어서의 하계가 $\Omega$(mlog(n/m))이라는 사실로부터 우리의 알고리즘이 비교횟수와 관련해 점근적 최적 알고리즘에 해당함 을 추론가능하다. worst case 복잡도 증명을 위해 모든 입력수열로 구성된 정의구역을 두개의 서로소인 집합으로 나눈다. 그런 후 서로소인 각각의 집합으로 부터 특수한 subcase를 구별한 후 이들 subcase 각각에 대해 점근적 최적성을 증명한다. 이 증명을 바탕으로 나머지 모든 경우에 대한 최적성 또한 추론 또는 증명 가능함을 소개한다. 이로써 우리는 복잡도 분석이 까다로운 알고리즘에 대해 투명한 하나의 해를 제시한다.

로버스트 회귀추정에 의한 신뢰구간 구축 (On Confidence Intervals of Robust Regression Estimators)

  • 이동희;박유성;김기환
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.97-110
    • /
    • 2006
  • 대부분의 자료는 여러가지 원인으로 인한 특이치로 오염되어 있으며, 이러한 상황에서 신뢰성 있는 추정량을 얻어내고 이에 대한 통계적 추론을 시행하는 것은 중요한 문제이다. 그러나 이제까지 제안된 로버스트 회귀추정량들은 계산상의 어려움과 정규오차모형에서 최소제곱추정량에 비하여 떨어지는 효율성때문에 통계적 추론의 정확성을 확신할 수 없었다. 최근 제안된 Lee(2004)의 가중자기조율회귀추정량(weighted self-tuning estimator, WSTE)은 다른 로버스트 회귀추정량에 비하여 정확한 계산과정과 그에 따른 추정량의 점근적 정규성 및 고붕괴점을 갖는다. 그러나 통계적 추론을 위하여 이제까지 널리 사용해왔던 로버스트 추정량에 기반한 가중최소제곱추정방법(weighted least squares estimator)은 WSTE에서조차 정규오차모형하에서 최소제곱추정량과 동일한 수준의 효율성을 제공해주지 는 못한다. 본 논문에서는 WSTE에 기반한 또다른 통계적 추론 방법을 제안하고, 이 방법을 사용함으로써 정규오차모형 및 대표본에서 보다 정확한 결과를 얻을 수 있음을 몬테칼로 모의실험을 통해 제시하였다.

순열검정을 이용한 FLSA의 사후추론 (Permutation test for a post selection inference of the FLSA)

  • 최지은;손원
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.863-874
    • /
    • 2021
  • FLSA는 총변동벌점을 이용해 구간별상수인 평균 구조를 구현하는 벌점모형으로 다중변화점 탐색을 위해 활용되고 있다. 한편, FLSA는 변화점 탐색에 있어서 점근적 일치성이 만족되지 않으므로 잡음의 크기가 0에 가깝게 수렴하는 경우에도 다수의 거짓 변화점이 식별될 수 있다는 단점이 있다. 이 연구에서는 이러한 FLSA의 문제점을 해결하기 위한 사후추론 방법으로 순열검정 방법을 제안한다. 단일변화점 모형과 관련된 순열검정 방법은 Antoch와 Hušková (2001)에 의해 제안된 바 있다. 이 연구에서는 Antoch와 Hušková (2001)의 검정절차를 확장하여 다중변화점 식별에 사용되는 FLSA와 결합함으로써 다중변화점 모형에 적용할 수 있는 순열검정절차를 제안한다. 모의실험 결과, 제안된 방법은 z-검정과 CUSUM 통계량의 극한분포에 기반을 둔 검정방법에 비해 전반적으로 우수하였으며 거짓 변화점의 식별에 유용함을 확인할 수 있었다.

시계열모형에서 추정함수를 이용한 로버스트 추론방법 (Robust Estimation using Estimating Functions for Time Series Models)

  • 차경엽;김삼용;이성덕
    • 응용통계연구
    • /
    • 제12권2호
    • /
    • pp.479-490
    • /
    • 1999
  • 선형시계열모형인 AR(1)모형과 비선형시계열모형인 RCA(1), ARCH(1)모형에서 이상치(Outlier)가 존재할 경우 최소제곱추정량과 M추정량간의 점근상대효율(Asymptotic Relative Efficiency: ARE)을 구하여 두 추정량의 로버스트 성질을 비교·분석하였다. 또한 여러 유계함수(Huber, Tukey, Andrews, Hampel)들을 M추정함수에 적용하여 각각의 유계함수들을 비교·분석하였다.

  • PDF