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요 약

단순하고 스테이블한 머징알고리즘의 비교횟수와 관련된 worst case 복잡도를 분석한다. 복잡도 분석을 통해 소개되는 알

고리즘이  과 , ≤ 사이즈의 두 수열에 대해  log의 비교횟수를 요구하는 사실을 증명한다. 그래서 병합에

있어서의 하계가 Ω log이라는 사실로부터 우리의 알고리즘이 비교횟수와 관련해 점근적 최적 알고리즘에 해당함

을 추론가능하다.

worst case 복잡도 증명을 위해 모든 입력수열로 구성된 정의구역을 두개의 서로소인 집합으로 나눈다. 그런 후 서로소인

각각의 집합으로 부터 특수한 subcase를 구별한 후 이들 subcase 각각에 대해 점근적 최적성을 증명한다. 이 증명을 바탕

으로 나머지 모든 경우에 대한 최적성 또한 추론 또는 증명 가능함을 소개한다. 이로써 우리는 복잡도 분석이 까다로운 알

고리즘에 대해 투명한 하나의 해를 제시한다.

키워드 : 스테이블 머징, 미니멈 스토리지, 알고리즘복잡도.

Abstract

We investigate the worst case complexity regarding the number of comparisons for a simple and stable merging

algorithm. The complexity analysis shows that the algorithm performs  log comparisons for two sequences

of sizes  and  ≤ . So, according to the lower bound for merging  log , the algorithm is asymptotically

optimal regarding the number of comparisons.

For proving the worst case complexity we divide the domain of all inputs into two disjoint cases. For either of these

cases we will extract a special subcase and prove the asymptotic optimality for these two subcases. Using this

knowledge for special cases we will prove the optimality for all remaining cases. By using this approach we give a

transparent solution for the hardly tractable problem of delivering a clean complexity analysis for the algorithm.

Key Words : stable merging, minimum storage, complexity of algorithms

1. Introduction

Merging denotes the operation of rearranging the el-

ements of two adjacent sorted sequences of sizes 

and , so that the result forms one sorted sequence of

 elements. An algorithm merges two adjacent se-

quences with minimum storage [1] when it needs

log bits additional space at most. It is re-

garded as stable, if it preserves the initial ordering of

elements with equal value.

There are two significant lower bounds for merging.

The lower bound for the number of assignments is

 because every element of the input sequences

can change its position in the sorted output. As shown

by Knuth in [1] the lower bound for the number of

comparisons is  log

 , where ≤.

The simple standard merge algorithm is rather in-

efficient, because it uses linear extra space and always

needs a linear number of comparisons. The Recmerge

algorithm of Dudzinski and Dydek [2] is minimum stor-

age merging algorithm that is asymptotically optimal

regarding the number of comparisons. It performs the

merging by a binary partitioning of both input se-

quences which operates as the foundation of a rotation

that is followed by two recursive calls.
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Another class of merging algorithms is the class of in
place merging algorithms, where the external space is

restricted to a constant amount merely. Recent work in

this area are the publications [3, 4, 5, 6, 7], that de-

scribe algorithms which are all asymptotically optimal

regarding the number of comparisons as well as

assignments. However, these algorithms are structurally

quite complex and rely heavily on other concepts, as

e.g. Kronrod's idea of an internal buffer [8], Mannila

and Ukkonen's technique for block rearrangements [9]

and Hwang and Lin's merging algorithm [10].

In [11] we presented a stable minimum storage merging

algorithm called SymMerge and investigated its worst

case complexity regarding the number of comparisons

as well as assignments. However, the complexity anal-

ysis was restricted only to a special case called

“Maximum spanning case". Furthermore the method

taken for the complexity analysis was quite complex.

In this paper we complete our proof based on a new

simplified method for proving the worst case

complexity. Consequently we get the result that the

SymMerge algorithm performs  log

 compar-

isons for two sequences of sizes  and  (≤).

According to the lower bound  log

 mentioned

above, we can imply SymMerge is asymptotically opti-

mal regarding the number of comparisons.

For proving the worst case complexity we divide the

domain of all inputs into two disjoint classes (cases),

for later reference denoted by case I and case II. For

either of these cases we will extract a special subcase

and prove the asymptotic optimality for these subcases.

Then the optimality of the special subcase of case I

logically implies the optimality of case I in general.

Further, based on the optimality for the special subcase

of case II, we will prove the optimality for all remaining

cases of case II.

2. The SymMerge Algorithm

We start with a brief introduction of the merging

method of the SymMerge algorithm presented in [11].

Let us assume that we have to merge the two se-

quences    and    . When we com-

pare the input with the sorted result, we can see that in

the result the last two elements of  occur on positions

belonging to  , and the first two elements of  appear

on positions belonging to  (see Fig. 1 a)). So, 2 ele-

ments were exchanged between  and  . The kernel of

SymMerge is to compute this number of side-changing

elements efficiently and then to exchange such a num-

ber of elements. More accurately, if we have to ex-

change  (≥ ) elements between sequences  and  ,

we move the  greatest elements from  to  and the

 smallest elements from  to  , where the exchange

of elements is realized by a rotation. Then by recursive

application of this technique to the arising subsequences

we get a sorted result. Fig. 1 illustrates this approach

to merging for our above example.

We will now focus on the process of determining the

number of elements to be exchanged. This number can

be determined by a process of symmetrical comparisons

of elements that happens according to the following

principle:

We start at the leftmost element in  and at the right-

most element in  and compare the elements at these

positions. We continue doing so by symmetrically com-

paring element-pairs from the outsides to the middle.

Fig. 1 b) shows the resulting pattern of mutual com-

parisons for our example. There can occur at most one

position, where the relation between the compared ele-

ments alters from 'not greater' to 'greater'. In Figure 1

b) two thick lines mark this position. These thick lines

determine the number of side-changing elements as

well as the bounds for the rotation mentioned above.

So far we introduced the computation of the number of

side-changing elements as linear process of symmetric

comparisons. But this computation may also happen in

the style of a binary search. Then only

⌊logmin⌋ comparisons are necessary to

compute the number of side-changing elements.

2.1 Formal Definition

Let  and  be two adjacent ascending sorted

sequences. We define ≤     iff ≤    

for all elements ∈ and for all elements ∈ .

We merge  and  as follows:

If ≤ , then

Fig. 1. SymMerge example
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(a1) we decompose  into  such that  

and either    or    .

(a2) we decompose  into  (≥ , ≥ )

and  into  ≥ , ≥  such that

  ,    and ≤ ,  .

(a3) we rotate  to .

(a4) we recursively merge  with  as well as

 with . Let ′ and ′ be the resulting sequences,

respectively.

else

(b1) we decompose  into  such that  

and either    or    .

(b2) we decompose  into  (≥ , ≥ )

and  into  ≥ , ≥  such that

  ,    and ≤ ,  .

(b3) we rotate  to .

(b4) we recursively merge  with  as well as

 with . Let ′ and ′ be the resulting sequences,

respectively.

′′ then contains all elements of  and  in sorted

order.

Fig. 2 contains an accompanying graphical description

of the process described above. The steps (a1) and (b1)

manage the situation of input sequences of different

length by cutting a subsection  in the middle of the

longer sequence as ``active area''. This active area has

the same size as the shorter of either input sequences.

The decomposition formulated by the steps (a2) and

(b2) can be achieved efficiently by applying the princi-

ple of the symmetric comparisons between the shorter

sequence  (or ) and the active area  . After the de-

composition step (a2) (or (b2)), the subsequence 
(or ) is rotated so that we get the subsequences

 and  ( and ).

In [11] we presented an implementation of the

SymMerge algorithm in Pseudocode which shows the

algorithm is easy to implement.

Stability

During the symmetric decomposition of  and  (

and ) ≤ and   (≤ and  ) al-

ways hold. The treatment of pairs of equal elements as

part of the “outer blocks" (  in (a2) and   in

(b2)) avoids the exchange of equal elements and so any

reordering of these. Hence the following corollary holds:

Corollary 2.1. SymMerge is stable.

Minimum Storage Property

The decomposition steps (a1) and (a2) ((b1) and

(b2)) satisfy the properties    or   ,

   and    (   or   ,

   and   ). Therefore the following corol-

lary holds:

Corollary 2.2. After applying the decomposition

steps (a1) and (a2) (or (b1) and (b2)) it holds

  ⌊ ⌋ and

   ⌈ ⌉.

The following theorem holds trivially.

Theorem 2.3. The recursion-depth of SymMerge is

bounded by ⌈log⌉.

Corollary 2.4. SymMerge is a minimum storage

algorithm.

Fig. 2. Illustration of SymMerge
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3. Worst Case Complexity regarding the

number of comparisons

We start this section with a short overview of the

proof's structure. First we will divide the domain of all

inputs into two disjoint classes (cases). For either of

these classes we will extract a special subclass and

prove the asymptotic optimality for these two

subclasses. Using this knowledge for special cases we

will prove the optimality for all remaining cases.

Unless stated otherwise, let us denote  ,  ,

≤, , i. e.   log . Further let 
 and 



denote the sizes of sequences merged on the th re-

cursion level where the index  denotes the order of the

merged sequences. Initially (on the recursion level ), it

holds 
  and 

 . On the next recursion level

, (


) is divided into two pairs (children nodes).

We denote these by 


 


 where the se-

quences of lengths 
 and 

 are merged with the

sequences of lengths 
 and 

 respectively. On the

recursion level , the sequences of lengths 
 

 
 ⋯

and 
 are merged with the sequences of lengths


 

 
 ⋯ and 

 respectively, where it holds

≤ ≤  .

We divide the domain of all inputs into two disjoint

classes as follows:

Case I - Every internal node 


 with 
  is

divided into two pairs ′′ and ″″ ,
where it holds ′≥ and ″≥. Further all in-

puts of size  for all ≥  belong to this class.

Case (a) of Fig. 3 shows such an example.

Case II - Complement of Case I; During the compu-

tation, some node 


 with 
   is divided into

two pairs ′′ and ″″ , where

′  and ″ . Case (b) of Fig. 3 shows such

an example.

First we show SymMerge performs  log
comparisons for case I.

Case I:

We begin by considering the complexity for a special

case called maximum spanning case. In this case 

is partitioned into 


 and 




and each 
 

    ⋯ is partitioned into




 and 
 


 .

Subcase I.1: Maximum spanning case

Figure 4 shows the partitioning for the maximum span-

ning case. On the recursion level , a sequence of

length 
   

  is merged with a sequence

of length 
 

 . Note that we need ⌊log⌋ com-

parisons for merging the sequences (pair) of lengths


  completely. Further, by the merging method of

SymMerge, such a merging is done over several re-

cursion levels. However, for the convenience of com-

plexity analysis we will consider the overall number of

required comparisons ⌊log⌋ at once on each cor-

responding recursion level .

Fig. 3. Examples

Fig. 4. Maximum spanning case

Fig. 5. Construction of recursion groups
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Theorem 3.1. The SymMerge algorithm needs

 log comparisons for the maximum

spanning case.

Proof. The binary search of the recursion level  re-

quires ⌊log⌋≤ log comparisons. For the

recursion level 1 we need

⌊log⌋⌊logmin⌋≤· log
comparisons since 


 ⌊⌋and




 ⌈⌉by Corollary 2.2. Further it

holds for all ≥ each 
 

  is divided into two

pairs 


 and 


 where it holds




 ⌊  ⌋ and 


 

⌈  ⌉. Therefore the overall number of com-

parisons for all  levels does not exceed

log
  

log   log

log
  



  log .
Now we consider the complexity for case I in

general. Fig. 5 shows all  levels of the maximum

spanning case can be partitioned into  recursion

groups, say recursion group  , recursion group  , ⋯,

recursion group , so that each recursion group

   ⋯ comprises  recursion levels (Here,

we assume  i.e.  log). Note that if  

then   ⋯ ⋯ log.
Accordingly we get the following corollary:

Corollary 3.2. For the maximum spanning case each

recursion group    ⋯ covers  merging

pairs (nodes).

There is a further special case where each merging

pair (subsequence merging) always triggers two non-

empty merging pairs. In this case each recursion group

 is exactly equal to the recursion level . Therefore re-

cursion groups and recursion levels are identical. Case

(a) of Fig. 6 shows such an example. Eventually, be-

cause of the condition of case I that every internal node



 with 

  is divided into two pairs

′′ and ″″ , with ′≥ and

″≥, we can always construct  recursion

groups so that each recursion group ,   ⋯ 

covers at most  pairs. Thus the following theorem

holds:

Theorem 3.3. For case I the SymMerge algorithm

needs  log comparisons.

Proof. For any input  in case I, let  be the set

consisting of all merging pairs (nodes) which arise dur-

ing the computation. Then  can be partitioned into

 recursion groups such that each recursion group ,

  ⋯  has at most  pairs and needs at most

log  comparisons. Hence for all levels, the

required number of comparisons is less than


  



 log 
  



 log

 log since 
  



   .

Case II: Complement of Case I

Now we investigate the worst case complexity for case

II. We can state and prove the following basic results:

Lemma 3.4. Any node 
⌈log⌉⌈log⌉ on

the recursion level ⌈log⌉satisfies


⌈log⌉⌈log⌉≤ .

Proof. As shown in Corollary 2.2, each call of the

SymMerge decomposes the input sequence into two

output subsequences with equal size. Therefore


⌈log⌉⌈log⌉≤ ⌈log⌉≤ .

Lemma 3.5. If , then ⌊log⌋

 



⌊log⌋
 



⌊log⌋⋯

 



⌊log⌋  .
Proof.

Fig. 6. Examples for partitioning the set of all merging pairs into  groups
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⌊log⌋
 



⌊log⌋
 



⌊log⌋
⋯

 



⌊log⌋ ≤
 



· log


  

 log .
Similar to case I, we consider a special case, here the

case    or   , i.e. the merging represents the

identity or a simple block rotation from  to  .

Subcase II.1: Case of    or    (identity or

block rotation)

Since both cases have the same complexity, without

loss of generality we assume    . To get the result

 , on the recursion level  it has to hold 
  ,


  , 

 ⌊ ⌋, 
 ⌈ ⌉. If


≤

, on the next recursion level we get 
 ,


  , 

 ⌊ ⌋, 
 ⌈ ⌉. For

the recursion level , 
 has to be equal to  so long

as we have  
≤

. Accordingly, we get the

followings:

Theorem 3.6. Let  be the merged result of the in-

put  . Then the SymMerge algorithm needs

 log comparisons until reaching the re-

cursion level ⌈log⌉.

Proof. Every recursive call up to the recursion level⌈log⌉ requires ⌊log⌋ comparisons.

Thus the overall number of comparisons until reaching

the maximal indivisible depth of  is ⌊log⌋
⌈log⌉ log log
Theorem 3.7. Let  be the merged result of the in-

put  . Then the SymMerge algorithm needs

log comparisons for merging the sequences on

the recursion level ⌈log⌉.

Proof. By Corollary 2.2 and 3.4 the recursion depth of

the sequences on the recursion level ⌈log⌉ is

bounded by ⌈log⌉. On each recursion level the

number of required comparisons is less than

⌊log⌋ . Thus the overall number of required

comparisons is less than ⌈log⌉·⌊log⌋
 log .

Accordingly, by Theorem 3.6 and Theorem 3.7 the

following corollary holds:

Corollary 3.8. Let  (or ) be the merged result

of the input  . Then the SymMerge algorithm needs

log log comparisons for ≥

and log comparisons otherwise.

Now we consider the complexity for case II in

general. In this case we can always divide all merged

pairs (internal nodes) 


 generated during the

computation into two disjoint parts; part (a) consisting

of all nodes 


 with 
  and all nodes 




which are partitioned into two nodes ′′ and

″″ with ′  and ″  , part (b) con-

sisting of all remaining nodes 


 
 ≥ which is

partitioned into two nodes ′′ and ″″
with ′  or ″ .

In subcase II.1 (case of    or   ), all merged

pairs (nodes) occurring during the computation belong

to only part (b). As already shown in Theorem 3.6 and

Theorem 3.7 it needs less than ⌊log⌋
⌈log⌉⌈log⌉·⌊log⌋
log comparisons.

Now, for better understanding the complexity analy-

sis, we consider an additional case that is similar to

case II.1. The case is described as follows:  is

partitioned into 


 and 


 with 
  ,


   and the remaining computations of the both no-

des 


 and 


 correspond to the identity or

block rotation. In this case, except of the node belong-

ing to the recursion level , i.e.  , all remaining

nodes belong to part (b). Similar to subcase II.1, we can

analyze the complexity for part (b) of this case. So, it

needs less than ⌈log⌉·⌊log⌋

 



⌊log⌋
 



⌊log⌋ . Further by

Lemma 3.5 it holds ⌈log⌉·
⌊log⌋

 



⌊log⌋
 



⌊log⌋
⌈log⌉·⌊log⌋  ⌊log⌋

 



⌊log⌋⋯
 



⌊log⌋
 log comparisons.

Theorem 3.9. For case II the SymMerge algorithm

needs  log comparisons.

Proof. First we divide all internal nodes of any com-

putation of case II into two disjoint parts; part (a) and

part (b). By Theorem 3.3, part (a) can be partitioned

into at most  recursion groups such that each re-

cursion group    ⋯ covers at most  pairs
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and needs at most  log  comparisons.

Hence the complexity for part (a) is bounded by

 log . Now we consider the required

number of comparisons for part (b). The set of all no-

des belonging to part (b) is a proper subset of some set

{








⋯


 ⋯} where

it holds 
   for all  and . Thus the number of all

required comparisons for part (b) does not exceed⌈log⌉·⌊log⌋  ⌊log⌋

 



⌊log⌋⋯
 



⌊log⌋
 log by Lemma 3.4 and Lemma 3.5.

Hence we conclude the following corollary by

Theorem 3.3 and Theorem 3.9.

Corollary 3.10. The SymMerge algorithm is asymp-

totically optimal regardingthe number of comparisons.

4. Experimental Work

As already shown in [11], we did some benchmarking

with the unfolded version of the SymMerge algorithm

and compared it with the implementations of three other

merging algorithms. As first competitor we chose the

merge_without_buffer-function contained in the C++

Standard Template Libraries (STL) [12]. The second

competitor was taken from [13]. As third competitor we

took the classical standard algorithm. The result of our

evaluation has shown that the SymMerge algorithm is

very efficient and so might be of high practical interest.

5. Conclusion

We proved that the SymMerge algorithm is asymp-

totically optimal regarding the number of comparisons.

The proof gained its simplicity from the special charac-

teristic of the SymMerge algorithm to map a merging

of size    always to two mergings of size

. This “even splitting” is an interesting property of

its own, it allows e.g. even load balancing in the con-

text of parallel architectures. By repeatedly evenly

splitting the input, the task of merging can be dis-

tributed over several processing units without disturb-

ing the overall asymptotic optimality regarding

comparisons.
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