• Title/Summary/Keyword: 절리 미끄러짐

Search Result 6, Processing Time 0.021 seconds

Stress Distribution Under Line Load in Transversely Isotropic Rock Mass (평면이방성 암반에서 선하중에 의한 응력분포 특성)

  • Lee Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.288-295
    • /
    • 2005
  • Many mechanical defects originated from various geological causes make rock mass exhibit anisotropic characteristics. Understanding how the stress distribution occurs in anisotropic rock mass is, therefore, very important for the design of footings on rock and rock structures. In this study, the patterns of elastic stress distribution, developed by acting line load on the surface, in transversely isotropic was investigated. The influence of joint stiffness, joint spacing, and dip angle on the stress distribution was examined. By assuming the Mohr-Coulomb criterion as joint slip condition, the development of joint slip zone was also discussed.

Analysis of Rock Slope Behavior Utilizing the Maximum Dip Vector of Discontinuity Plane (불연속면의 최대경사벡터를 활용한 사면거동해석)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.332-345
    • /
    • 2019
  • Maximum dip vector of individual joint plane, which can be uniquely defined on the hemispherical projection plane, has been established by considering its dip and dip direction. A new stereographic projection method for the rock slope analysis which employs the maximum dip vector can intuitively predict the failure modes of rock slope. Since the maximum dip vector is uniquely projected on the maximum dip point of the great circle, the sliding direction of discontinuity plane can be recognized directly. By utilizing the maximum dip vector of discontinuity both the plane sliding and toppling directions of corresponding blocks can be discerned intuitively. Especially, by allocating the area of high dip maximum dip vector which can form the flanks of sliding block the potentiality for the formation of virtual sliding block has been estimated. Also, the potentiality of forming the triangular-sectioned sliding block has been determined by considering the dip angle of joint plane the dip direction of which is nearly opposite to that of the slope face. Safety factors of the different-shaped blocks of triangular section has been estimated and compared to the safety factor of the most hazardous block of rectangular section. For the wedge analysis the direction of crossline of two intersecting joint planes, which has same attribute of the maximum dip vector, is used so that wedge failures zone can be superimposed on the stereographic projection surface in which plane and toppling failure areas are already lineated. In addition the maximum dip vector zone of wedge top face has been delineated to extract the wedge top face-forming joint planes the orientation of which provides the vital information for the analysis of mechanical behavior of wedge block.

A Case Study of Collapse at Tunnel Portal adjacent to the Large Cut Slope (대절토사면과 인접한 터널갱구부의 붕괴사례연구)

  • Koo, Ho-Bon;Kim, Seung-Hee;Rhee, Jong-Hyun;Kim, Jin-Hwan
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.573-576
    • /
    • 2008
  • 절토사면 및 천심도 터널의 경우 불연속면을 따른 블록의 미끄러짐 및 회전 등이 안정성에 큰 영향을 미친다. 국도나 지방도 등을 확장 공사함에 따라 산악이 많은 우리나라 지형의 특성상 절토사면이 많이 발생하게 되고, 경우에 따라서는 이러한 절토사면에 터널이 위치하게 된다. 이런 상황의 터널갱구부 및 인접한 절토사면부에서 붕괴 및 균열이 빈번하게 발생되고 있다. 본 연구에서는 대절토사면과 인접한 터널갱구부에 대하여 편토압이 균열의 주원인인지를 결정하기 위하여 변위 및 응력 패턴을 분석한 사례연구를 제시하였다. 조사대상지역은 울진군에 위치한 터널굴진 현장이고, 붕괴는 터널갱구부와 인접한 절토사면부에서 발생하였으며 터널갱구부 상단의 숏크리트 타설지역에서 다수의 균열이 관찰되었다. 언급한 터널갱구부의 변위 및 응력패턴을 모사하기 위하여 유한차분법에 근거한 플랙을 사용하였으며, 세밀한 수치해석을 위해 편재절리모델을 도입하였다. 마지막으로, 터널갱구부의 균열에 영향을 미친 주원인에 대한 고찰을 다루었다.

  • PDF

Dynamic Frictional Behavior of Artificial Rough Rock Joints under Dynamic Loading (진동하중 하에서 거친 암석 절리면의 동력 마찰거동)

  • Jeon Seok-Won;Park Byung-Ki
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.166-178
    • /
    • 2006
  • Recently, the frequency of occurring dynamic events such as earthquakes, explosives blasting and other types of vibration has been increasing. Besides, the chances of exposure for rock discontinuities to free faces get higher as the scale of rock mass structures become larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, artificially fractured rock joint specimens were prepared in order to examine the dynamic frictional behavior of rough rock joint. Roughness of each specimen was characterized by measuring surface topography using a laser profilometer and a series of shaking table tests was carried out. For mated joints, the static friction angle back-calculated ken the yield acceleration was $2.7^{\circ}$ lower than the tilt angle on average. The averaged dynamic friction angle for unmated joints was $1.8^{\circ}$ lower than the tilt angle. Displacement patterns of sliding block were classified into 4 types and proved to be related to the first order asperity of rock joint. The tilt angle and the static friction angle for mated joints seem to be correlated to micro average inclination angle which represents the second order asperity. The tilt angle and the dynamic friction angle for unmated Joints, however, have no correlation with roughness parameters. Friction angles obtained by shaking table test were lower than those by direct shear test.

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

A Study on the Sliding Characteristics of Infilling-joint Surface (충전절리면의 미끄러짐특성에 관한 연구)

  • Lee, Jung-Yub;Park, Yeong-Mog;Kim, Jae-Seok;Koo, Ho-Bon;Baek, Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.499-502
    • /
    • 2003
  • The purpose of this study is to understand the sliding characteristics of the infilling-joint surface using the new devised shear test apparatus with changeable slope for the original infilling materials and the infilling materials experienced cyclic freezing-thawing processes. Three types of the mother rock classified as the igneous rock, the metamorphic rock and the sedimentary rock and the infilling materials were collected for laboratory test. The cohesion according to the slope change of the rock joint shows large variation within ${\pm}$5 degrees but the internal friction angle shows appears the linear decreasing tendency. It is confirmed that the affecting factor of slope change of rock joint at the behavior of rock mass is larger than that of the infilling thickness. Test results show that the cohesion and the internal friction angle in 100 times of cyclic freezing-thawing processes are decreased about 50 percent compared with original one. A further study using various infillings materials would lead to a better understanding of the failure mechanism of rock mass by slope change of rock joint.

  • PDF