• Title/Summary/Keyword: 절대절점좌표계

Search Result 7, Processing Time 0.018 seconds

Flexible Multibody Dynamic Analysis of the Wiper System for Automotives (자동차 와이퍼 시스템의 유연 다물체 동역학 해석)

  • Jung, Sung-Pil;Park, Tae-Won;Cheong, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.175-181
    • /
    • 2010
  • This paper presents the dynamic analysis method for estimating the performance of flat-type blades in wiper systems. The blade has nonlinear characteristics since the rubber is a hyper-elastic material. Thus, modal coordinate and absolute nodal coordinate formulations were used to describe the dynamic characteristic of the blade. The blade was structurally analyzed to find the bending characteristics of the cross section of the blade. According to the analysis results, the blade section is divided into three deformation bodies: rigid, small, and large. For the small deformation body, the modal coordinate formulation is used, while the absolute nodal coordinate formulation is used for the large deformation body. To verify the dynamic analysis result, an experiment was performed. The simulation and experiment results were compared to verify the flexible multi-body dynamic model.

Development and Verification of a Dynamic Analysis Model for the Current-Collection Performance of High-Speed Trains Using the Absolute Nodal Coordinate Formulation (절대절점좌표를 이용한 고속철도 집전성능 동역학 해석 모델 개발 및 검증)

  • Lee, Jin-Hee;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.339-346
    • /
    • 2012
  • The pre-evaluation of the current-collection performance is an important issue for high-speed railway vehicles. In this paper, using flexible multibody dynamic analysis techniques, a simulation model of the dynamic interaction between the catenary and pantograph is developed. In the analysis model, the pantograph is modeled as a rigid body, and the catenary wire is developed using the absolute nodal coordinate formulation, which can analyze large deformable parts effectively. Moreover, for the representation of the dynamic interaction between these parts, their relative motions are constrained by a sliding joint. Using this analysis model, the contact force and loss of contact can be calculated for a given vehicle speed. The results are evaluated by EN 50318, which is the international standard with regard to analysis model validation. This analysis model may contribute to the evaluation of high-speed railway vehicles that are under development.

Non-Dimensional Analysis of a Two-Dimensional Beam Using Linear Stiffness Matrix in Absolute Nodal Coordinate Formulation (절대절점좌표계에서 선형 강성행렬을 활용한 2차원 보의 무차원 해석)

  • Kim, Kun Woo;Lee, Jae Wook;Jang, Jin Seok;Oh, Joo Young;Kang, Ji Heon;Kim, Hyung Ryul;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • Absolute nodal coordinate formulation was developed in the mid-1990s, and is used in the flexible dynamic analysis. In the process of deriving the equation of motion, if the order of polynomial referring to the displacement field increases, then the degrees of freedom increase, as well as the analysis time increases. Therefore, in this study, the primary objective was to reduce the analysis time by transforming the dimensional equation of motion to a non-dimensional equation of motion. After the shape function was rearranged to be non-dimensional and the nodal coordinate was rearranged to be in length dimension, the non-dimensional mass matrix, stiffness matrix, and conservative force was derived from the non-dimensional variables. The verification and efficiency of this non-dimensional equation of motion was performed using two examples; cantilever beam which has the exact solution about static deflection and flexible pendulum.

Behavior of Flexible Hose Connected to Mother Ship (모함에 연결된 탄성 호스의 거동)

  • Kim, Kun-Woo;Lee, Jae-Wook;Kim, Hyung-Ryul;Yoo, Wan-Suk;An, Deuk-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.235-240
    • /
    • 2011
  • A flexible hose attached to a mother ship experiences various motions that depend on the movement of the mother ship and that of underwater vehicle. Although the motion of the hose is a very important factor that determines how a mother ship should be steered in a real situation, it is difficult to experimentally obtain information about the hose motion. Therefore, we study the motion of the hose analytically. The ANCF(absolute nodal coordinate formulation) was used to model the hose, because this formulation can relax the Euler-Bernoulli theory and the Timoshenko beam theory and allow the deformation of the cross section. The mother ship is assumed to be a rigid body with 6 degrees of freedom. The motion of the hose is predominantly affected by the behavior of the mother ship and by the fluid flow.

Nonlinear Analysis of Beam Using Linear Finite Element Method and Dynamic Analysis (선형 유한요소법과 동역학을 연계한 보의 비선형 거동 해석)

  • Jang, Sung-Hee;Lee, Seoung-Soo;Kim, Chang-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.754-755
    • /
    • 2010
  • 본 논문에서는 선형 유한요소법과 동역학적 해석방법을 연계하여 유연 다물체 보의 거동을 해석하였다. 이 방법은 절대 절점 좌표계를 사용하였고, 몇 가지 수치 예제를 해석해 본 논문에서 설명하는 선형 유한 요소법과 동역학적 연계 해석방법의 타당함을 확인하였다.

  • PDF

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(II. Analysis of the Integrated Current Collection System) (고속전철 집전시스템의 동역학 해석에 관한 연구(II. 집전시스템 통합 해석))

  • Seo Jong-Hwi;Mok Jin-Yong;Jung Il-Ho;Park Tae-Won;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, the combined system equation of motion, which can analyze the dynamic interaction between pantograph and catenary system, is derived by adopting absolute nodal coordinates and rigid body coordinates. The analysis results are compared with real experiment data from test running of Korean high-speed train (HSR 350x). In addition, a computation method for the dynamic stress of contact wire is presented using the derived system equation of motion. This method might be good example and significant in that the structural and multibody dynamics model can be unified into one numerical system.

Dynamic Analysis of a Pantograph-Catenary System for High-Speed Train(I. Modeling and Analysis of a Catenary System) (고속전철 집전시스템의 동역학 해석에 관한 연구(I. 가선계의 모델링 및 해석))

  • Seo Jong-Hwi;Jung Il-Ho;Park Tae-Won;Mok Jin-Yong;Kim Young-Guk;Kim Seok-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • The dynamic properties between catenary and pantograph of high-speed train are very important factors to affect the stable electric power supply. So as to design the reliable current collection system, a multibody simulation model is needed. In this paper, the dynamic analysis method for a pantograph-catenary cable system of high-speed train is presented. The very deformable motion of a catenary cable is demonstrated using nonlinear continuous beam theory, which is based on an absolute nodal coordinate formulation, and the pantograph is modeled as a rigid multibody. The proposed method might be very efficient, because this method can present the nonlinear properties of a flexible catenary cable and set a various boundary conditions.