• Title/Summary/Keyword: 전-전두엽

Search Result 47, Processing Time 0.029 seconds

Improvement of High Permittivity Pads for Areas with Generally Low Signal Sensitivity at 7T MRI (7T MRI에서 일반적으로 신호 감도가 낮은 영역에 대한 고유전율 패드 개선)

  • Yong-Tae, Kim;Hyeon-Man, Baek
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.761-769
    • /
    • 2022
  • Pads with high dielectric materials have been used in a variety of applications to locally improve the field sensitivity and homogeneity of RF pulses in clinical MRI studies. In this study, we aimed to improve such pads in consideration of the practical problems associated with the application of actual clinical images. A high permittivity pad to increase the attenuated B1 field strength was fabricated and tested in 7T MRI. Sim4Life simulation and experimental results show stronger and relatively uniform B1 near field. In order to improve the image quality in the whole cerebellum, known as a region with low sensitivity, a guide was made to reduce the mechanical change of the pad. In order to improve the wearing comfort, the pad was designed by dividing it into upper and lower parts. The facial pad showed an overall signal increase effect in areas such as the turbinate in the nasal cavity. Signal increase was expected in areas such as the frontal lobe and eyes, but the effect was either insignificant or it was difficult to see the effect in the imaging protocol. In conclusion, this paper showed a cerebellar-optimized pad with an improved nasal signal while maintaining its effectiveness.

Effects of Attenuation and Scatter Corrections in Cat Brain PET Images Using microPET R4 Scanner (MicroPET R4 스캐너에서 획득한 고양이 뇌 PET 영상의 감쇠 및 산란보정 효과)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Jong-Jin;Lee, Byeong-Il;Park, Min-Hyun;Lee, Hyo-Jeong;Oh, Seung-Ha;Kim, Kyeong-Min;Cheon, Gi-Jeong;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Purpose: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. Materials and Methods: To assess the effects of AC and SC $^{18}F$-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using $^{68}Ge$ source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM was measured. Results: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by $17{\pm}7%$. After the SC, contrast was also increased by $12{\pm}3%$. Conclusion: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

The Findings and Significances of Brain SPECT in Acute Mealses Encephalitis (급성 홍역 뇌증 환아들의 뇌 SPECT 소견과 유용성)

  • Kim, Jung Chul;Choung, Ju Mi;Eun, So Hee;Lee, Dae-Yeol;Kim, Jung Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.11
    • /
    • pp.1373-1380
    • /
    • 2002
  • Purpose : Acute measles encephalitis(ME) is characterized by an abrupt onset of fever and obtundation, frequently accompanied by seizures and multifocal neurological signs. The aim of this study was to clarify the clinical manifestation, progression and the brain SPECT patterns in patients with acute ME. Methods : This study included 11 children with acute ME admitted to Chonbuk National University Hospital. Ten patients received a first dose of measles vaccine, one patient did not receive a first dose, and no patients received a second dose. ME was diagnosed based on characteristic clinical pictures, measles antibodies by ELISA and abnormal CSF findings. Brain MRI and brain SPECT were performed in 11 patients with acute ME. Results : There were four males and seven females whose ages at onset ranged between 18 months and 14 years(mean : 10.5 years). The main clinical neurologic pictures were loss of consciousness( 10) and seizure(five). The titer of IgG and IgM antimeasles antibodies in serum were positive in 10 patients. In CSF, nine patients had IgG antibodies and one patient had IgM antibodies. The concentration of protein(mean : $124{\pm}60mg/dL$) and WBC counts(mean : $158{\pm}157/{\mu}L$) in CSF were elevated in all patients. In electroencephalographic examination, nine patients showed increased slow waves. Seven of 11 patients(63.6%) revealed high signal intensity on the brain MRI. In contrast, all patients showed hypoperfusion in brain SPECT examination. According to brain SPECT, the perfusion deficits were frequently observed in the frontal lobe(nine), temporal (nine), parietal(eight) and thalamus(eight). Conclusion : Brain SPECT is more sensitive than MRI for the evaluation of brain damage in early stages of acute ME.

Effect of Repetitive Transcranial Magnetic Stimulation in Drug Resistant Depressed Patients (치료 저항성 우울증 환자에서 반복적 경두개 자기자극후 국소뇌혈류 변화)

  • Chung, Yong-An;Yoo, Ie-Ryung;Kang, Bong-Joo;Chae, Jeong-Ho;Lee, Hye-Won;Moon, Hyun-Jin;Kim, Sung-Hoon;Sohn, Hyung-Sun;Chung, Soo-Kyo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • Purpose: Repetitive transcranial magnetic stimulation (rTMS) has recently been clinically applied in the treatment of drug resistant depressed patients. There are mixed findings about the efficacy of rTMS on depression. Furthermore, the influence of rTMS on the physiology of the brain is not clear. We prospectively evaluated changes of regional cerebral blood flow (rCBF) between pre- and post-rTMS treatment in patients with drug resistant depression. Materials and Methods: Twelve patients with drug-resistant depression (7 male, 5 female; age range: $19{\sim}52$ years; mean age: $29.3{\pm}9.3$ years) were given rTMS on right prefrontal lobe with low frequency (1 Hz) and on left prefrontal lobe with high frequency (20 Hz), with 20-minute-duration each day for 3 weeks. Tc-99m ECD brain perfusion SPECT was obtained before and after rTMS treatment. The changes of cerebral perfusion were analyzed using statistical parametric mapping (SPM; t=3.14, uncorrected p<0.01, voxel=100). Results: Following areas showed significant increase in rCBF after 3 weeks rTMS treatment: the cingulate gyrus, fusiform gyrus of right temporal lobe, precuneus, and left lateral globus pallidus. Significant decrement was noted in: the precental and middle frontal gyrus of right frontal lobe, and fusiform gyrus of left occipital lobe. Conclusion: Low-frequency rTMS on the right prefrontal cortex and high-frequency rTMS on the left prefrontal cortex for 3 weeks as an add-on regimen have increased and decreased rCBF in the specific brain regions in drug-resistant depressed patients. Further analyses correlating clinical characteristics and treatment paradigm with functional imaging data may be helpful in clarifying the pathophysiology of drug-resistant depressed patients.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Tc-99m ECD Brain SPECT in MELAS Syndrome and Mitochondrial Myopathy: Comparison with MR findings (MELAS 증후군과 미토콘드리아 근육병에서의 Tc-99m ECD 뇌단일 광전자방출 전산화단층촬영 소견: 자기공명영상과의 비교)

  • Park, Sang-Joon;Ryu, Young-Hoon;Jeon, Tae-Joo;Kim, Jai-Keun;Nam, Ji-Eun;Yoon, Pyeong-Ho;Yoon, Choon-Sik;Lee, Jong-Doo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.6
    • /
    • pp.490-496
    • /
    • 1998
  • Purpose: We evaluated brain perfusion SPECT findings of MELAS syndrome and mitochondrial myopathy in correlation with MR imaging in search of specific imaging features. Materials and Methods: Subjects were five patients (four females and one male; age range, 1 to 25 year) who presented with repeated stroke-like episodes, seizures or developmental delay or asymptomatic but had elevated lactic acid in CSF and serum. Conventional non-contrast MR imaging and Tc-99m-ethyl cysteinate dimer (ECD) brain perfusion SPECT were Performed and imaging features were analyzed. Results: MRI demonstrated increased T2 signal intensities in the affected areas of gray and white matters mainly in the parietal (4/5) and occipital lobes (4/5) and in the basal ganglia (1/5), which were not restricted to a specific vascular territory. SPECT demonstrated decreased perfusion in the corresponding regions of MRI lesions. In addition, there were perfusion defects in parietal (1 patient), temporal (2), and frontal (1) lobes and basal ganglia (1) and thalami (2). In a patient with mitochondrial myopathy who had normal MRI, decreased perfusion was noted in left parietal area and bilateral thalami. Conclusion: Tc-99m ECD SPECT imaging in patients with MELAS syndrome and mitochondrial myopathy showed hypoperfusion of parieto-occipital cortex, basal ganglia, thalamus and temporal cortex, which were not restricted to a specific vascular territory. There were no specific imaging features on SPECT. The significance of abnormal perfusion on SPECT without corresponding MR abnormalities needs to be evaluated further in larger number of patients.

  • PDF