• Title/Summary/Keyword: 전후방 알고리즘

Search Result 9, Processing Time 0.024 seconds

Orthonormalized Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm (직교설 전후방 PAST (Projection Approximation Subspace Tracking) 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.514-519
    • /
    • 2009
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimates the signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. FE-PAST (Forward-Backward PAST) is one of the results from the improvement studies. In this paper, we propose a new algorithm to improve the orthogonality of the FB-PAST (Forward-Backward PAST).

Unmanned accident prevention Arduino Robot using color detection algorithm (색 검지 알고리즘을 이용한 무인 사고방지 아두이노 로봇 개발)

  • Lee, Ho-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.493-497
    • /
    • 2015
  • This study was started with concern about problem of increasing physical and personal injury caused by traffic accidents, despite of technological advances in transportation. As the vehicles, which is currently produced, informs the driver only detecting the proximity of an object by the front and rear sensor, this study implemented the color detection algorithm, the circular shape recognition algorithm, and the distance recognition algorithm and built the accident prevention beyond accident perception, which commends to avoid the object or to stop the robot, if object was detected by algorithms. For the simulation, we made the Arduino vehicle robot equipped with compact wireless communication camera and confirmed that the robot successfully avoids an object or stops itself in simulated driving.

  • PDF

Intelligent Black Box with Rotating Screen using Infrared Distance Sensor (적외선 거리 센서를 이용한 지능형 화면회전 블랙박스)

  • Rhee, Eugene
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.168-173
    • /
    • 2018
  • To overcome the problems of the existing black box which is exposed to the risk of blind spots in the imaging of a fixed front and rear views of an object, this paper suggests a new intelligent black box that can detect and shoot side views of an object. This paper proposes an algorithm of the intelligent black box with a rotating function in order to compensate for the side blind spot of the vehicle. This intelligent black box with rotating screen adopts the infrared distance sensor to sense an object which approaches to the vehicle and rotates automatically towards the object.

Forward/Backward First Order Statistics Algorithm for the Estimation of DOA in a Multipath Environment (다중경로 환경에서 DOA를 추정하기 위한 전후방 일차 평균 알고리즘)

  • 김한수;임준석;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.8
    • /
    • pp.64-67
    • /
    • 1998
  • 여러 해 동안 많은 연구자들에 의해서 코히런트한 간섭신호가 있는 환경에서 신호 의 도래각을 추정하는 방법에 대한 연구가 진행 되어왔다. 이런 방법들은 대부분 공간 평활 (Spatial Smoothing)류의 방법을 사용하고 있으나 Pillai에 의해서 각 센서에 들어오는 신호 의 평균을 이용한 방법이 제안되었다. 이 방법에서는 특별히 복소수의 입력에 대해서는 대 칭형 배열을 사용하도록 했기 때문에 실수 입력을 다룰 때 보다 약 2배의 센서 개수가 필요 하다[S.U.Pillai,Array Signal Processing,Springer-Verlang New York, 1989]. 본 논문에서는 Pillai의 방법을 사용할 때 복소수 입력에서도 실수 입력의 경우와 같은 개수의 센서를 사용 하는 방법을 제안한다.

  • PDF

Stochastic Glitch Estimation and Path Balancing for Statistical Optimization (통계적 최적화를 위한 확률적 글리치 예측 및 경로 균등화 방법)

  • Shin Ho-Soon;Kim Ju-Ho;Lee Hyung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.8 s.350
    • /
    • pp.35-43
    • /
    • 2006
  • In the paper, we propose a new method for power optimization that uses path balancing based on stochastic estimation of glitch in Statistical Static Timing Analysis (SSTA). The proposed method estimates the probability of glitch occurrence using tightness probability of each node in timing graph. In addition, we propose efficient gate sizing technique for glitch reduction using accurate calculation of sizing effect in delay considering probability of glitch occurrence. The efficiency of proposed method has been verified on ISCAS85 benchmark circuits with $0.16{\mu}m$ model parameters. Experimental results show up to 8.6% of accuracy improvement in glitch estimation and 9.5% of optimization improvement.

A Square-Root Forward Backward Correlation-based Projection Approximation for Subspace Tracking (신호부공간 추정 성능 향상을 위한 전후방 상관과 제곱근행렬 갱신을 이용한 COPAST(correlation-based projection approximation for subspace-tracking) 알고리즘 연구)

  • Lim, June-Seok;Pyeon, Yong-Kug
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.7-15
    • /
    • 2011
  • In this paper, we propose a correlation-based subspace estimation technique, which is called square-root forward/backward correlation-based projection approximation subspace tracking(SRFB-COPAST). The SRFB-COPAST utilizes the forward and backward correlation matrix as well as square-root recursive matrix update in projection approximation approach to develop the subspace tracking algorithm. With the projection approximation, the square-root recursive FB-COPAST is presented. The proposed algorithm has the better performance than the recently developed COPAST method.

Optimal Control Scheme for SEIR Model in Viral Communications (Viral 통신에서의 SEIR모델을 위한 최적제어 기법)

  • Radwan, Amr
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1487-1493
    • /
    • 2016
  • The susceptible, exposed, infectious, and recovered model (SEIR) is used extensively in the field of epidemiology. On the other hand, dissemination information among users through internet grows exponentially. This information spreading can be modeled as an epidemic. In this paper, we derive the mathematical model of SEIR in viral communication from the view of optimal control theory. Overall the methods based on classical calculus, In order to solve the optimal control problem, proved to be more efficient and accurate. According to Pontryagin's minimum principle (PMP) the Hamiltonian function must be optimized by the control variables at all points along the solution trajectory. We present our method based on the PMP and forward backward algorithm. In this algorithm, one should integrate forward in time for the state equations then integrate backward in time for the adjoint equations resulting from the optimality conditions. The problem is mathematically analyzed and numerically solved as well.

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.