• Title/Summary/Keyword: 전해이동

Search Result 168, Processing Time 0.024 seconds

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries (Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지)

  • Lee, Jae Seob;Yang, Ji Hoon;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.574-581
    • /
    • 2022
  • Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.

The Seasonal Variation of Catch by the Anchovy Gill Net and Formation of Fishing Ground (멸치 자망 어획량의 계절변동 및 어장형성)

  • SOHN Tae-Jun;LEE Byoung-Gee;CHANG Ho-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.92-100
    • /
    • 1984
  • The seasonal variation of catch and the fishing ground formation of anchovy caught by gill net are studied by using the data for 14 years, 1969 to 1982, published by the Fisheries Research and Development Agency of Korea. The main fishing season of anchovy by gill net can be devised into two seasons: spring and autumn. The former begins early in spring, marks peak in May with the monthly mean catch of 3,000 $\frac{M}{T}$ and ends in summer. The latter begins early in autumn, marks peak in October with the monthly mean catch of 1,500$\frac{M}{T}$ and ends in winter. The fishing ground begins to be formed in the southern waters of Korea with the begining of spring fishing season, and it is extended all over the south-eastern waters from spring to summer and it is converged to the coastal areas from autumn to winter. From the calculation of correlationship between adjacent fishing sections, the fishing ground can be devided into three areas; the northern area of $37^{\circ}N$, the southern area of $35^{\circ}N$ and the area between $35^{\circ}N\;and\;37^{\circ}N$. In the northern area of $37^{\circ}N$, monthly centers of the fishing ground are located in the adjacent aea area of Sockcho-Jumunjin district in the whole year, and its annual mean variance shows about 8 miles in the latitudinal direction and 10 miles in the longitudinal direction. In the area between $35^{\circ}N\;and\;37^{\circ}N$, monthly centers are located in the adjacent sea area of Kijang-Kuryongpo district, and the variance shows about 10 miles in the longitudinal direction and 20 miles in the latitudinal direction. In the southern area of $35^{\circ}N$, monthly centers are located in the open sea in spring and summer, and are conversed to the coastal area in autumn and winter, and the variance shows 8 miles in the latitudinal direction and 35 miles in the longitudinal direction. Water temperature and salinity at the fishing ground where the anchovy gill net was effectively operated are estimated from 14 to $20^{\circ}C$ and from 33.0 to $34.0\%0$ respectively.

  • PDF

Cesium Sorption to Granite in An Anoxic Environment (무산소 환경에서의 화강암에 대한 세슘 수착 특성 연구)

  • Cho, Subin;Kwon, Kideok D.;Hyun, Sung Pil
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.101-109
    • /
    • 2022
  • The mobility and transport of radioactive cesium are crucial factors to consider for the safety assessment of high-level radioactive waste disposal sites in granite. The retardation of radionuclides in the fractured crystalline rock is mainly controlled by the hydrochemical condition of groundwater and surface reactions with minerals present in the fractures. This paper reports the experimental results of cesium sorption to the Wonju Granite, a typical Mesozoic granite in Korea, performed in an anaerobic chamber that mimics the anoxic environment of a deep disposal site. We measured the rates and amounts of cesium (133Cs) removed by crushed granite samples in different electrolyte (NaCl, KCl, and CaCl2) solutions and a synthetic groundwater solution, with variations in the initial cesium concentration (10-5, 5×10-6, 10-6, 5×10-7 M). The cesium sorption kinetic and isotherm data were successfully simulated by the pseudo-second-order kinetic model (r2= 0.99) and the Freundlich isotherm model (r2= 0.99), respectively. The sorption distribution coefficient of granite increased almost linearly with increasing biotite content in granite samples, indicating that biotite is an effective cesium scavenger. The cesium removal was minimal in KCl solution compared to that in NaCl or CaCl2 solution, regardless of the ionic strength and initial cesium concentration that we examined, showing that K+ is the most competitive ion against cesium in sorption to granite. Because it is the main source mineral of K+ in fracture fluids, biotite may also hinder the sorption of cesium, which warrants further research.

Clinical Significance of VEGF-C and COX-2 Expression in Gastric Carcinoma with Submucosal Invasion (점막하 침윤 조기위암 환자에서 VEGF-C와 COX-2 발현의 임상적 의의)

  • Cho, Yun-Jung;Lee, Jung-Uee;Lee, Kwan-Ju;Park, Cho-Hyun;Park, Seung-Man;Jeon, Hae-Myung;Ahn, Chang-Joon;Kim, Jeong-Goo;Lee, Dong-Ho;Lee, Sang-Chul
    • Journal of Gastric Cancer
    • /
    • v.9 no.3
    • /
    • pp.96-103
    • /
    • 2009
  • Purpose: Lymph node metastasis is an important factor in determining prognosis and therapeutic options for early gastric cancer (EGC) patients. Vascular endothelial growth factor (VEGF)-C and D are known as lymphangiogenic factors, and cyclooxygenase (COX)-2 is thought to play a role in lymph node metastasis in gastric carcinoma. This study was designed to determine whether the expression of VEGF-C, VEGF-D, and COX-2 is associated with clinicopathologic factors, especially lymph node metastasis in EGCs invading the submucosa. Materials and Methods: Tissue samples were obtained from 85 Patients undergoing standard gastrectomy with lymph node dissection between 1991 and 2007 in the Department of Surgery of Daejeon St. Mary's Hospital in Daejeon, Korea. All patients were diagnosed with gastric cancers and submucosal invasion. We examined the expression of VEGF-C, VEGF-D, and COX-2 using immunohistochemical methods. Results: Of the 85 patients, 16 (18.8%) had lymph node metastasis. VEGF-C, VEGF-D, and COX-2 were positively expressed in 34.1% (29/85), 22.3% (19/85), and 37.6% (32/85) of the patients. VEGF-C and COX-2 expression was significantly correlated with lymph node metastasis (P<0.05). A positive correlation existed between VEGF-C and COX-2 expression (P< 0.001). Conclusion: VEGF-C and COX-2 expression is associated with lymph node metastasis in gastric cancer with submucosal invasion. VEGF-C and COX-2 may thus be predictive markers for lymph node metastasis in EGC patients with submucosal invasion.

  • PDF

Characteristic of mycelial growth of cauliflower mushroom (Sparassis latifolia) using replacement culture with Trichoderma and rDNA analysis in genealogy of crossbreeding strain (푸른곰팡이 대치배양에 의한 꽃송이버섯 균사 생장 특성 및 계통간 교잡균주의 rDNA 분석)

  • Oh, Deuk-Sil;Kim, Hyun-Suk;Kim, Young;Wi, An-Jin;Yoon, Byung-Sun;Park, Whoa-Shig;Park, Hyeong-Ho;Wang, Seung-Jin
    • Journal of Mushroom
    • /
    • v.12 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • Cauliflower mushroom widely known high concent of ${\beta}$-glucan for farm cultivation invigoration verified characteristics of mycelia growth, genetic diversity, resistance to Trichoderma by replacement culture with Trichoderma and growth characteristics of new variety crossbleeding strain. The result of replacement culture with Trichoderma for verification resistance about Trichoderma, 6951 (T. viride) strain did not show special change after formation of confrontation line and 6952 (T. spp.) strain was showed more formation of spore after formation of confrontation line. But 6426 (T. harzianum) strain found to encroach part of growth area of cauliflower mushroom mycelia. Among 10 kinds cauliflower mushroom strain, JF02-06 strain collected by Gurye, found did not spore of Trichoderma and thought to be resistant to Trichoderma. The result of crossbleeding after selected that mother strain good growth and formation of fruit body, verified good mycelia growth at JF02-47, 49 and 50 strain in Korean pine of wood-chip media. The result of gene sequence about ITS1, 5.8S and ITS4 for analysis of genetic diversity at crossbleeding strain, found high significance to other cauliflower mushroom in registered Genebank. The result of growth characteristic of spore and mycelia of cauliflower mushroom by observation microscope, size of spore showed water drop shape to major axis $6{\mu}m$ and minor axis $5{\mu}m$ and clamp showed 3 types in mycelia. The wide of mycelia was $3{\mu}m$. The characteristic of mycelia of cauliflower mushroom found to grow mycelia in clamp at approximately 50%. The growth speed of mycelia was $0.507{\mu}m/min$ and 2nd mycelia grown similar speed to mother mycelia at parallel with mother mycelia after growth speed at $0.082{\mu}m/min$. The formation of clamp made small clamp for 5 hours after shown transfer of electrolyte in mycelia inside. The septum formation started after 3 hours and then finally completed after 2 hours. In this study, strain of cauliflower mushroom verified resistance of Trichoderma, genetic diversity and characteristic of mycelia growth. Therefore, basic knowledge of cauliflower mushroom will improve and further contribute to development of mushroom industry.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.