• Title/Summary/Keyword: 전해수

Search Result 1,132, Processing Time 0.031 seconds

Recovery of Copper in Wastewater from Electroless Plating Process (무전해(無電解) 구리 도금폐액(鍍金廢液)으로부터 구리의 회수(回收) 연구(硏究))

  • Lee, Hwa Young;Ko, Hyun Baek
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • An attempt to recover copper from electroless plating wastewater has been made through evaporation followed by the electrowinning method. From the determination of each element in electroless plating wastewater, the content of Cu was found to be 582 mg/l and small amount of Fe was also contained in it. Moreover, the content of COD and TOC which was resulted from the addition of Rochell salt was found to be 9,560 and 13,100 mg/l, respectively. The content of formic acid generated by the oxidation of formaldehyde was determined to be 7.73 %. As a result, current efficiency was decreased with increase in current density and therefore current density less than $40mA/cm^2$ should be maintained to obtain current efficiency more than 80 %. The content of Fe in Cu obtained by electrowinning was found to be 0.021 and 0.01 % at the concentration of sulfuric acid of 2 and 10 vol%, respectively.

Study on the Preparation of Copper Sulfate by Copper Powder using Cation Membrane Electrowinning Prepared from Waste Cupric Chloride Solution (염화동 폐액으로부터 양이온격막 전해 채취된 구리 분말을 이용한 황산동의 제조방법 연구)

  • Kang, Yong-Ho;Hyun, Soong-Keun
    • Resources Recycling
    • /
    • v.28 no.1
    • /
    • pp.62-72
    • /
    • 2019
  • Generally, $H_2SO_4$ and Cu metal are used as raw materials for producing copper sulfate. The study relates to a method for producing copper sulfate using electrowinning from a waste solution of copper chloride. Uses are used for copper plating for industry, plating, feed, agriculture, electronic grade PCB. Conventional methods for producing copper sulfate have a problem of a large amount of waste water and a high energy cost. A study on the production method of copper sulfate ($CuSO_4$), which is the most used among copper (Cu) compounds, has a low process operation ratio, a small amount of waste water, and a simple manufacturing process. It is easy to remove Na, Ca, Mg, and Al as impurities by using a cationic membrane. At the same time, high purity copper powder could be recovered by an electrowinninng method. Using the recovered copper powder, high purity copper sulfate could be produced.

Development of Ballast Water Treatment Technology (Feasibility Study of NaOCl Produced by Electrolysis) (밸러스트수 처리기술개발 I (해수전해법의 적용가능성 연구))

  • Yoon, B.S.;Rho, J.H.;Kim, K.I.;Park, K.S.;Kim, H.R.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.174-178
    • /
    • 2005
  • Destruction of marine ecology system induced by the bal last water discharged from ships is one of the most serious problem among the various ship associated environmental impacts. International Maritime Organization (IMO) has actively dealt with this problem for a long time and is going to start to activate very strong international treatment for preventing ocean from such serious environmental impact. Various technologies of ballast water treatment are now being developed all over the world. In this paper, recent trend of existing ballast water treatment technologies is investigated in detail. Furthermore, in order to apply electrolysis technology to ballast wale r treatment, its basic principle is reviewed theoretically and its feasibility is checked through some in-situ experiments. Quite good results are shown in the experiments enough to confirm its applicability in ballast water treatment.

  • PDF

Three-Dimensional Microstructures Fabricated by Multi-Step Electrochemical Aluminum-Foil Etching (알루미늄 박판의 다단 전해식각 공정을 이용한 3 차원 마이크로 구조물의 제작)

  • Kim, Yoon-Ji;Youn, Se-Chan;Han, Won;Cho, Young-Ho;Park, Ho-Joon;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1805-1810
    • /
    • 2010
  • We present a simple, cost-effective, and fast fabrication process for three-dimensional (3D) microstructures; this process is based on multi-step electrochemical etching of metal foils which facilitates the mass production of 3D microstructures. Compared to electroplating, this process maintains uniform and well-controlled material properties of the microstructure. In the experimental study, we perform single-step electrochemical etching of aluminum foils for the fabrication of 2D cantilever arrays. In the single-step etching, the depth etch rate and bias etch rate are measured as $1.50{\pm}0.10 {\mu}m/min$ and $0.77{\pm}0.03 {\mu}m/min$, respectively. Using the results of single-step etching, we perform two-step electrochemical etching for 3D microstructures with probe tips on cantilevers. The errors in height and lateral fabrication in the case of the fabricated structures are $15.5{\pm}5.8% $ and $3.3{\pm}0.9%$, respectively; the surface roughness is $37.4{\pm}9.6nm$.

Effect of Salt Concentration on Electrolyte Membranes for Dye Sensitized Solar Cells (염료감응형 태양전지를 위한 고분자 전해질막에서의 이온농도의 효과)

  • Kwon, So-Young;Yun, Mi-Hye;Cho, Doo-Hyun;Jung, Yoo-Young;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.213-221
    • /
    • 2011
  • Using poly(ethylene oxide) (PEO) as a polymer host, poly(ethylene glycol) (PEG) as a plasticizer, potassium iodide and iodine as sources of $I^-/I_3^-$, polymer electrolyte membranes were prepared. Based on the polymer electrolytes, solid-state dye-sensitized solar cell (DSSC)s were fabricated. The content of PEG in the electrolyte was controlled to be 95%. The mole number of KI per 1 mole of EO ([KI]/[EO] ratio) in the electrolyte was changed to be 0.022, 0.044, 0.066 and 0.088. The electrolyte membrane showed wax phase in ambient temperature. The ionic conductivity increased with increasing KI content to reach the maximum value at which [KI]/[EO] ratio is 0.066. After the maximum value, the ionic conductivity decreased with increasing KI content. In the case of DSSC, the Voc decreased continuously with increasing KI content in the polymeric electrolyte membrane. The $J_{SC}$ increased with increasing KI content to show maximum value at which [KI]/[EO] ratio is 0.044. In the higher KI content region, $J_{SC}$ value decreased with increasing KI content.