전투기 조종사 모델링은 국방 M&S(Modeling & Simulation)를 활용한 전쟁 모의 및 전투 실험의 기초 기술로 국방 M&S의 중요성이 대두됨에 따라 연구의 필요성이 높아지고 있다. 특히, 최근 전투 로그의 축적으로 통계적 학습 기법을 활용한 모델링의 적용이 가능해졌으며 전투 로그의 시계열적 특성을 반영할 수 있는 HMM(Hidden Markov Model)이 적합하다. 하지만 HMM은 이산형 혹은 연속형 중 한 형태의 변수만을 통해 학습되므로 이형 변수로 구성된 전투 로그에 적용을 위해서는 형변환 과정이 필요하다. 따라서 본 논문에서는 형변환을 위한 dPCA(Discrete Principal Component Analysis)와 HMM을 접목한 dPCA-HMM 기반 조종사 모델링 방법을 제안한다. 국방과학연구소 관급 시뮬레이터로부터 생성된 전투 로그를 이용한 비교 실험을 통해 제안하는 방법론의 성능을 평가하였으며, 만족스러운 성능을 나타내었다.
산업의 발전에 따라 게임에 활용되는 기술도 고도화 되고 있다. 특히, 인공지능 기술은 게임로그를 수집하고 분석하여 패턴을 추출하고 게임의 자동화와 지능화를 위하여 활용되고 있다. 이러한 게임 플레이어의 패턴은 온라인 게임에서 플레이어 매칭, 적대적 NPC의 생성, 게임 월드의 밸런싱 등 적용 범위가 넓다. 본 연구에서는 게임 플레이어의 모델 생성 방법을 제안한다. 모델 생성을 위하여 사냥, 수집, 이동, 전투, 위기관리, 제작, 상호작용 등의 속성을 정의하였으며 의사결정나무 방법을 이용하여 패턴을 추출하고 모델링 하였다. 제안하는 방법의 검증을 위하여 상용 게임의 게임 로그를 이용하여 모델링하고 에러율을 확인하였으며 유효한 결과를 확인하였다.
For decades, modeling of pilots has been intensively studied due to its advantages in reducing costs for training and enhancing safety of pilots. In particular, research for modeling of pilots' non-kinetic behaviors which refer to the decisions made by pilots is beneficial as the expertise of pilots can be inherent in the models. With the recent growth in the amount of combat logs accumulated, employing statistical learning methods for the modeling becomes possible. However, the combat logs consist of heterogeneous data that are not only continuous or discrete but also sequence independent or dependent, making it difficult to directly applying the learning methods without modifications. Therefore, in this paper, we present a kernel function named hybrid sequence kernel which addresses the problem by using multiple kernel learning methods. Based on the empirical experiments by using combat logs obtained from a simulator, the proposed kernel showed satisfactory results.
본 논문에서는 과거 2차 세계대전 자료 중 Ardennes 전역에서 있었던 실제 전투 자료를 란체스터 모형에 적합 시키기 위하여 로그변환된 선형회귀모형을 추정하는 문제를 다루었다. 먼저 동일한 자료에 대하여 기존 연구 결과를 고찰하여 모수에 대한 최적해(Global Solution) 결정 문제와 다중공선성 문제들을 확인하였다. 최소제곱 추정법에 의한 모수 추정은 특정 제약조건이나 제한된 후보군을 고려할 경우 최적해를 찾지 못하고 지역해(Local Solution)를 찾을 수 있음으로 주의가 필요하고, 모형에 포함된 변수들은 통계적으로 충분히 유의성을 검토하여 포함해야지 그렇지 않았을 때 모수 추정값들이 왜곡될 수 있다. 모형에 과도하게 많은 설명 변수를 포함하는 경우 변수 간의 상관관계로 인하여 추정값이 왜곡되고 변수의 추가나 제거 시 불안정한 현상들이 발생한다. 이런 다중공선성 문제를 탐색하는 방법은 설명 변수 간의 선형적 연관 관계를 측정할 수 있는 분산확대인자(VIF)로 알려진 통계량에 의해 확인이 가능하며 이를 조치하기 위해서는 상호 연관된 설명 변수들을 제거하여 모형을 단순화해야 한다. 그래서 이러한 문제가 발생하지 않도록 모형을 단순화하고 이해와 설명이 용이한 전투력 손실률 모형을 제안하였고 Ardennes 자료에 대하여 적합한 결과 모수 추정이 안정적이고 자료에 대한 설명과 해석이 용이하다는 점을 입증하였다. 특히, 모수 추정간 선형회귀 모형의 기본적인 가정사항인 독립성, 정규성, 등분산성을 검증하여 자기상관(Autocorrelation) 문제로 독립성이 훼손되어 과대 과소 추정될 우려가 있는 사항을 Cochrane-Orcutt 방법에 의해 변환하여 독립성과 정규성을 보장하였다.
최근 게임의 종류가 다양해지고 접할 기회가 많아지면서 게임을 즐기는 사용자의 성향과 수준도 다양해지고 있다. 기존의 NPC는 행동이 단순하고 획일적이기 때문에 다양한 사용자를 상대하는데 한계가 있다. 따라서 각기 다른 사용자와 비슷한 수준으로 대응할 수 있는 적응형 NPC를 생성하는 기술이 필요하다. 본 논문은 적응형 NPC를 생성하기 위한 행동 정보 관리 기법을 제안한다 행동정보 저장 방법은 적응형 NPC가 사용자의 행동을 관찰하고 (상태-행동)의 관계로 정보를 수집한다. 수집한 행동 정보의 효율 값을 구하고 유사한 상태정보들은 군집화하여 행동 데이터베이스에 저장한다. 게임시스템은 행동 데이터베이스를 갱신하며 다양한 행동을 저장하고 효율 값이 좋은 행동을 선택하여 사용자에게 적응해 가는 NPC를 생성한다. 본 연구에서 제안한 적응기법을 액션 게임에 적용하여 실험하였다 임의의 실험자는 적응형 NPC와 실시간으로 1:1 전투를 한다. 게임 결과 로그파일을 통해 실험자와 NPC의 행동 성향을 분석하여 유사성을 판단한다. 다양한 실험 결과의 통계에서 오차율 6% 이내의 사용자와 비슷한 수준으로 적응해 가는 NPC를 생성할 수 있었다.
군의 정비체계에서 표준정비인시는 정비부대의 정비능력을 판단하는 도구로서 정비 소요와 작업량을 결정하는 기준을 제공하고, 정비계획 수립의 기초 자료로 활용된다. 군 주요 장비의 평시 표준정비인시는 이미 선정되어 활용하고 있으나 전시 정비환경에서 표준정비인시는 미선정되어 이를 산출할 필요성이 제기되었다. 이는 전시에 정비 시설, 공구, 장비, 인력 등이 충분치 않고, 정비 목표와 수준이 평시와는 상이하므로 평시 표준정비인시를 직접 적용하는 것은 적절하지 못하기 때문이다. 따라서 본 연구는 전시 표준정비인시 산정을 위해 필요한 데이터를 수집·선별하는 과정과 기준을 제시하고, 표준정비인시 산출 프로세스에서 정비인시 분포의 특징을 분석하여 표준정비인시로서의 대푯값을 선정하는 방법을 제안한다. 제시되는 전시 정비인시 산출 프로세스는 먼저 전시 정비환경을 고려한 기준과 가정사항 등을 반영한 모델을 설계하고, 표준정비인시 도출의 통계적 기법을 결정하며, 전시와 유사한 환경의 평시 정비실적 데이터를 수집하여 기술통계 분석과 정비인시 분포를 추정 및 검증하고 최종적으로 대푯값을 제시하는 방법을 사용한다. 제안된 방법을 토대로 육군이 운용 중인 4개 주요 전투장비의 전시 표준정비인시를 도출하였으며, 해당 장비들의 정비인시 분포가 로그 정규분포를 따르고 있는 것으로 분석되어 신뢰성 있는 결과값을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.