• Title/Summary/Keyword: 전진 비행

Search Result 82, Processing Time 0.025 seconds

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.

A Experimental Study of Aerodynamic Interference on Quad-Tilt Propeller UAV Wings in Forward Flight Condition (전진 비행하는 Quad-Tilt Propeller 형상 무인기 날개에서 나타나는 공력간섭 현상에 대한 실험적 연구)

  • Kim, Taewoo;Chung, Jindeog;Kim, Yangwon;Park, Cheolwan;Cho, Taehwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.81-89
    • /
    • 2019
  • In this study, wind tunnel test on Quad-Tilt Propeller which has tandem wings is carried out to analyze the aerodynamic interference effect of front wing and propeller on rear wing during forward flight. Using 6-axis balance system, forces and moments of whole aircraft were measured and using strain gauge at wing root, bending moments were measured to observe change of aerodynamic force of each wings. A 12-hole probe was used to measure the flow field in the wing and propeller wake. Flow characteristics were observed qualitatively through flow visualization experiment using tuft and smoke. To measure the aerodynamic interference by elements, the influence of front wing and propeller on rear wing was analyzed by changing the wings and propellers mount combination.

Flight Envelope Load Factor Limit Logic Design for Helicopter Fly-By-Wire Controller (전자식 조정장치 헬리콥터의 하중 비행영역 제한 로직 설계)

  • Choi, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.159-164
    • /
    • 2016
  • This paper reports the load factor logic design for a fly-by-wire helicopter flight envelope protection. As a helicopter is very complex system with a rotor, fuselage, engine, etc., there are many constraints on the flight region. Because of these constraints, pilots should consider them carefully and have a heavy workload, which causes controllability degradation. In this respect, automatic logic is needed to free the pilot from these considerations. As one of these logics, the flight envelope protection logic for the load factor of a FBW helicopter was designed. The flight to exceed the load factor is caused by an abrupt pitch cyclic stick change. In this scheme, the load factor limit logic was added between the pilot stick command block and pitch attitude command block. From the current load value, the available attitude range was calculated dynamically and simulated on the helicopter simulator model to verify the performance. A comparison of the simulation results at the hovering and forward speed region with and without applying the load limiting logic showed that the load factor limit was exceeded more than 20% when the logic was not applied, whereas with the load factor limit logic the load factor was within the limit. In conclusion, a dynamically allocated limitation logic to helicopter FBW controller was verified by simulation.

Numerical Analysis of Flowfield around Multicopter for the Analysis of Air Data Sensor Installation (대기자료센서 장착위치 분석을 위한 멀티콥터 주변 유동장 수치해석)

  • Park, Young Min;Lee, Chang Ho;Lee, Yung Gyo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.20-27
    • /
    • 2017
  • The present paper describes the flow analysis of the flows around the multicopter for the selection of optimal position of air data sensor. For the flow analysis, the commercial fluid dynamics solver, STAR-CCM+ was used with polygon mesh and k-w SST turbulence modeling options. For the simulation of each rotating 4 propellers, unstructured overset mesh method was used. Hovering, forward flight, ascending and descending flight conditions are selected for the analysis and airspeed and flow angle errors were investigated using the CFD results. Through the flow field analysis, sensor location above one propeller diameter distance from the propeller rotating plane showed airspeed error less than 1m/s within the typical flight conditions of multicopter except descending.

Nozzle Flow Characteristics and Simulation of Pesticide Spraying Drone (농약 살포 드론의 노즐 유동 특성 및 시뮬레이션)

  • Kang, Ki-Jun;Chang, Se-Myong;Ra, In-Ho;Kim, Sun-Woo;Kim, Heung-Tae
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2019
  • When there is a spray flow such as from a pesticide nozzle, winds affect the droplet flow of a rotary-wing drone accompanied by a strong wake, with a severe oscillation. Especially, during forwarding flights or when winds come from the side, compare to a simple hovering flight as the droplet is in the effect of aerodynamic drag force, the effect of spraying region becomes even larger. For this reason, the spraying of pesticides using drones may cause a greater risk of scattering or a difference in droplet dispersion between locations, resulting in a decrease in efficiency. Therefore, through proper numerical modeling and its applied simulation, an indication tool is required applicable for the various flight and atmospheric conditions. In this research, we completed both experiment and numerical analysis for the strong downwash from the rotor and flight velocity of the drone by comparing the probability density function of droplet distribution to build a spraying system that can improve the efficiency when spraying droplets in the pesticide spray drone.

Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight (전진 비행하는 쿼드 틸트 로터의 공력성능 및 특징에 대한 수치적 연구)

  • Lee, Seonggi;Oh, Sejong;Choi, Seongwook;Lee, Yunggyo;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.197-209
    • /
    • 2018
  • In this study, numerical analyses on Quad Tilt Rotor(QTR) are carried out to investigate the interference effect of components and effect of operating condition during forward flight. Actuator Surface Method(ASM) which is implemented in an open source CFD code, OpenFOAM, is used to calculate the flow field around QTR with high computational efficiency. The lift of the front and rear wing is found to increase or decrease depending on the rotation direction of the rotor. At the rear wing, the interference effects of the front and rear rotor appear as a combined manner. Performance change due to the phase difference is found to be insignificant. For both rotors, the locally higher thrust is generated by the blockage effect of the wing. The interference effect of wake from the front nacelle contributes to higher local thrust for the rear rotor compared to the front rotor. And it is observed that the amplitude of thrust oscillation can decrease depending on the phase difference between the rotors. Aerodynamic performances of both rotors and the entire aircraft were compared and analyzed for various operating conditions.

A Study on Multi-Fault Diagnosis for Turboshaft Engine of UAV Using Fuzzy and Neural Networks (퍼지 및 신경망을 이용한 무인 항공기용 터보축 엔진의 다중손상진단에 관한 연구)

  • Kong, Chang-Duk;Ki, Ja-Young;Kho, Seong-Hee;Koo, Young-Ju;Lee, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.556-561
    • /
    • 2009
  • The UAV(Unmanned Aerial Vehicle) that is remotely operating in various and long flight environments must have a very reliable propulsion system. Precise fault diagnosis of the turbo shaft engine for the Smart UAV that has the vertical take-off, landing and forward flight behaviors can promote reliability and availability. This work proposes a new diagnostic method that can identify the faulted components from engine measuring parameter changes using Fuzzy Logic and quantify its faults from the identified fault pattern using Neural Network Algorithms. The proposed diagnostic method can detect not only single fault but also multiple faults.

An Analysis of High Speed Impulsive Noise of Rotating Blades Using Frequency Domain Method (주파수 영역 기법을 이용한 회전익의 고속 충격소음 해석)

  • 윤태석;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.443-449
    • /
    • 1996
  • 헬리콥터, 팬, 프로펠러, 터이빈같이 회전익에서 유체역학적 소음이 발생하는 장치의 설계에 있어서는 공기 역학적 성능 분석과 함께 소음에 대한 해석이 절대적으로 필요하다. 근래에 들어와서 소음에 대한 관심이 급격히 증가하고 공항 주변에서의 국제적인 규약들은 낮은 소음 수준(low noise level)을 규정하고 있으며, 이에 따라서 소음을 감소시키려는 연구가 매우 활발히 진행되고 있는 실정이다. 더욱이 컴퓨터의 냉각 팬을 비롯한 공조기기 및 산업기기에 사용되는 회전기계에서 발생되는 소음의 저감은 보다 더 쾌적한 환경을 요구하는 사회적 요구에 부합하면서 공력소음의 연구 분야가 더 넓어지고 있다. 본 논문에서는 소음예측 방법중의 하나인 음향상사(acoustic analogy)를 주파수 영역 방법(frequency domain method)을 이용하여 헬리콥터 블레이드의 고속 충격소음(High Speed Impulsive Noise)을 해석한다. 고속 충격소음은 블레이드-와류 상호작용 소음과 더불어 헬리콥터의 지배적인 소음원으로서 깃끝 속도가 큰 전진 수평비행(forward level flight)또는 제자리 비행(hovering flight)시 발생하는 소음으로 블레이드의 깃끝 마하수(critical Mach number)보다 크거나 비슷할 경우 충격파의 교란에 의해서 일어나는 충격적인 소음을 말한다. 고속 충격소음은 고주파수 스펙트럼 성분과 큰 소음강도를 가지고 있기 때문에 날카로운 금속성의 소리를 내며 먼 거리까지 전파되는 특징을 가지고 있다.

  • PDF

A Study on Walking Dron available for a rescue Purpose (구조 목적에 적용 가능한 보행가능 드론에 대한 연구)

  • Jeon, Jinseong;Lee, Jibin;Beck, Jonghwan;Bong, Daegeun;Lee, Jihyeon;Pak, Myeongsuk;Kim, Sanghoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1772-1775
    • /
    • 2015
  • 본 논문에서는 쿼드콥터와 4족이동 로봇을 결합 하여 임베디드 보드를 이용한 실시간 영상처리를 활용하고 환경 탐지용 센서를 부착하여 재난극복 및 재난현장에서의 인명구조, 신원확인을 하는 지능로봇을 제안한다. 쿼드콥터는 비행이동을 하면서 임무를 수행하고 4족이동 로봇은 지상 임무수행을 하는 로봇이다. 본 논문에서는 쿼드콥터와 4족 이동로봇의 결합으로 인해 로봇의 무게 고려를 하여 설계를 하여, 비행과 지상을 이동하며 영상처리를 이용하여 임무를 수행 할 수 있는 로봇을 제작 했다.

Aerodynamic Features of Maple Seeds in the Autorotative Flight (자동회전 비행을 하는 단풍나무 씨앗의 항공역학적 특성)

  • Sohn, Myong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.843-852
    • /
    • 2016
  • The autorotative flight of maple seeds(Acer palmatum) is numerically simulated based on the 3D geometry and the motion parameters of real seeds. The nominal values of the motion parameters are 1.26 m/s for descent velocity, 133.6 rad/s (1,276 rpm) for spinning rate, $19.4^{\circ}$ for coning angle, and $-1.5^{\circ}$ for pitch angle. A compact leading-edge vortex (LEV) positioned at the inner span of the seed blade causes a large suction pressure on its leeward surface. The suction pressure peaks occur near the leading region of inner span sections. The flow pattern characterized by the prominent LEV and the values of aerodynamic force coefficients obtained in the present study are in good agreement with experimental data measured for a dynamically-scaled robot maple seeds. A spiraling vortex developed in the leeward region advances toward the seed tip and merges with the tip-passing flow, which is considered to be a mechanism of maintaining stable and attached LEV for the autorotating maple seeds.