• 제목/요약/키워드: 전지성

검색결과 2,800건 처리시간 0.034초

술폰화 폴리아릴렌에테르술폰 구조를 가진 소수성-친수성 블록공중합체 연료전지용 고분자 전해질막 (Proton Exchange Membrane from Hydrophobic-hydrophilic Block Copolymers based on Sulfonated Poly(arylene ether sulfone) in Fuel Cells)

  • 박지영;최종호;김형중;홍영택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.195-196
    • /
    • 2009
  • 술폰화 폴리아릴렌에테르술폰 공중합체를 기본구조로 한, 6F OH를 알코올 단량체로 사용하여 블록 공중합체를 직접 중합법으로 합성하였다. 이때 각각의 소수성-친수성 소중합체들은 동일한 분자량을 이용하여 합성했으며 그때의 두 소중합체의 몰비는 1:1로 하여 블록 공중합체의 술폰화도를 50%로 고정하였다. N-메틸-2피롤리돈(NMP) 용매 상에서 연료전지용 고분자 전해질 막을 제조하여 이온전도도 및 메탄올 투과도등의 측정을 통하여 최종 블록 공중합체 전해질 막의 기본 특성을 파악했다. 소수성-친수성 소중합체의 분자량을 조절함에 따라 최종 전해질 막의 이온 전도도를 향상시킬 수 있음이 확인되었고, 연료전지 성능 테스트 결과에서도 나피온(Nafion 115)과 비슷한 성능을 보였다.

  • PDF

CMP공정에 의한 CdTe 박막의 표면 및 광학 특성 거동 (Behavior of surfacial and optical properties of CdTe thin films by CMP process)

  • 박주선;나한용;고필주;김남훈;양정태;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.111-111
    • /
    • 2008
  • 태양전지는 태양에너지를 직접 전기에너지로 변환시켜주는 광전 소자로서 구조적으로 단순하고 제조 공정도 비교적 간단하지만, 실용화를 위해서는 비용적인 측면이 많은 걸림돌이 되고 있다. 기존의 실리콘 태양전지는 낮은 광흡수율, 고비용임에도 불구하고 가장 많이 활용되고 있는 태양전지 기술이다. 그러나 태양전지의 경제성 향상과 실용화를 위해서는 기존의 실리콘 태양전지 보다 고효율 및 고신뢰도의 박막형 태양전지의 개발이 필요하다. 박막헝 태양전지의 재료로는 비정질 실리콘, 다결정 실리콘. CIGS, CdTe 등이 있다. 그 중에서도 박막형 태양전지에 광흡수층 물질로는 밴드갭 에너지 (l.4eV 부근), 변환 효율, 경제성 등을 고려했을 때 II-VI족 화합물인 CdTe가 가장 적합한 것으로 각광받고 있다. 하지만 아직까지 실리콘 태양전지에 비해 효율이 많이 떨어지는 단점을 가지고 있기 때문에 효율을 더 끌어올리기 위한 연구가 활발히 진행되고 있는 실정이다. 또한 CMP(chemical mechanical polishing) 공정은 반도체 박막 분야뿐만 아니라 물리, 화학 반응의 기초 연구에도 널리 응용이 되는 기술로써, 시료와 연마 패드 사이의 회전마찰에 의한 기계적 연마와 연마제 (abrasive) 에 의한 화학적 에칭으로 박막 표면을 평탄화하는 기술이다. 본 연구에서는 sputtering 법에 의해 증착된 CdTe 박막에 CMP 공정을 적용하여 표면 특성을 개선한 뒤 태양전지 변환 효율과 직접적인 연관성을 가지고 있는 표면 및 광특성의 변화를 CMP 공정 전과 후로 비교하였다. 표면의 변화를 관찰하기 위해서 AFM(atomic forced microscope) 과 SEM(scanning electron microscopy) 을 이용하였으며, 광특성의 비교를 위해서 흡수율과 PL특성을 측정하였다.

  • PDF

태양전지 산업의 동향 - 광학과 태양전지의 어플리케이션 및 향후 전망

  • 김동균
    • 광학세계
    • /
    • 통권123호
    • /
    • pp.22-25
    • /
    • 2009
  • III-V족 화합물반도체 태양전지중 다접합 구조 태양전지와 집광형 태양전지는 제 3세대 태양전지로서 주목받고 있다. 현재 가장 간단하고 저렴한 원가를 갖는 구조가 프레넬 렌즈 1장을 사용한 구조로서 현재의 광학시설과 인프라만으로도 많은 부분을 개선할 수 있을 것이라 확신한다. 렌즈를 활용하여 집광한 빛을 한곳으로 모으로 이를 셀에 균일한 강도로 손실 없이 전송하기 위한 기하광학적 설계기술이 필요하며 이러한 설계와 조명설계를 결합하여 광시스템을 구축하는 것이 무엇보다 중요하다. 현재 나라마다의 다양하고 적극적인 개발노력으로 인하여 수년 안에 기존보다도 훨씬 효율성 높고 실용적인 태양집광시스템이 개발되리라 기대한다.

  • PDF

현대자동차의 연료전지 스택 개발 현황 (Development status of Fuel Cell Stack in HMC)

  • 김세훈;이근제;임태원
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.25-29
    • /
    • 2005
  • 연료전지 차량이 기존의 내연기관 차량과 동등한 성능을 확보하기 위해서는 80kW 이상의 용량을 가진 스택이 탑재되어야 하며, 별도로 차량 구조를 변경시키지 않고 탑재하기 위해서는 높은 출력밀도를 가진 연료전지 스택의 개발이 필요하다. 현대 자동차가 독자 기술로 개발하고 있는 연료전지 스택은 출력 80kW, 출력밀도 1.0kW/l를 목표로 하고 있으며 지난 1년간의 과제 수행을 통해 어느 정도 성능을 만족하는 스택을 개발하였다. 앞으로는 연료전지 스택의 내구성 및 냉시동성을 개선하기 위해 많은 연구가 수행될 예정이다.

  • PDF

화합물 반도체 태양전지의 연구개발 동향

  • 임호빈;최병호
    • 전기의세계
    • /
    • 제39권10호
    • /
    • pp.20-27
    • /
    • 1990
  • 세계적으로 기술개발과 응용이 가장 치열한 반도체 및 신소재산업의 획기적인 개발에 힘입어 반도체소자가 기본 에너지원인 태양광발전 시스템이 대체에너지원으로 가장 주목을 받고 있다. "제1세대" 태양전지인 결정질규소 태양전지는 가격하락의 한계성에 부닺쳤으며, 이를 극복하기 위한 "제2세대" 태양전지로써 비정질 규소, CdTe 및 CuInSe$_{2}$등 화합물 반도체 태양전지에 연구가 집중되고 있다.체 태양전지에 연구가 집중되고 있다.

  • PDF

리튬전지의 생산성 향상을 위한 AI Foil spec. 변경에 관한 연구 (A study on productivity improvement of Li/MnO$_2$ battery by change of AI Foil spec.)

  • 김학주;송수정
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2001년도 추계산학기술 심포지엄 및 학술대회 발표논문집
    • /
    • pp.91-94
    • /
    • 2001
  • 리튬전지의 vent cap ass'y용의 AI foil에 LDPE(low density polyethylene)만을 coating하였으나 LDPE는 vent cover인 sus와의 열접착성이 우수하지 못하기 때문에 vent 조립시 상당한 주의가 필요했다. 그러나, LDPE보다 열접착성이 우수한 EVA(ethylene vinylacetate)와 EAA(ethylene acrylic acid)의 2중 coating된 AI foil을 이용함으로 열접착성을 향상시킬 수 있었다. 이에 따라, 전해액 누액 등의 전지 불량 원인을 제거함과 동시에 vent cap ass'y의 조립시 공정 불량까지 감소시킬 수 있었다.

고분자 전해질 연료전지용 Gasket 개발 (The Development of gasket for Proton Exchange Membrane Fuel Cell)

  • 천현아;성동묵;김태민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.166-168
    • /
    • 2007
  • 고분자 전해질 연료전지는 다수의 단위 cell을 적층하여 stack을 형성하게 되며, 각 단위 cell 은 분리판과 MEA 사이에 gasket을 장착하게 된다. 이때 장착된 gasket은 분리판과 MEA사이의 일정한 gap을 유지하여 가스를 균일하게 분배되도록 할 뿐만 아니라, 가스 유출을 막는 sealing 재(材)로서의 역할을 한다. 따라서 고분자 전해질 연료전지의 성능확보를 위해서는 내구성 및 가스 기밀성이 우수한 gasket 개발이 무엇보다 중요하다. 본 연구에서는 이러한 gasket 물성을 만족시킬 수 있는 고분자 전해질 연료전지용 gasket을 개발하고자 하였으며, 이를 검증하기 위하여 가혹 조건에서 실험을 수행하였다. 그 결과 종래의 gasket 보다 열적, 화학적 및 가스기밀성 변에서 우수한 고분자 전해질 연료전지용 gasket을 얻을 수 있었다.

  • PDF

수소연료전지용 분리판 소재 및 제조공정기술

  • 이창래;양철남
    • 기계와재료
    • /
    • 제21권2호
    • /
    • pp.24-49
    • /
    • 2009
  • 분리판은 수소연료전지 스택을 구성하는 부품 중에서 가장 많은 수량이 사용되는 부품의 하나로서 연료전지의 출력밀도(powder density, W/L), 비출력(specific power, W/kg) 및 가격($/kWe) 관점에서 가능한 저가의 소재 및 제조공정으로 경량/박형화가 이루어져야 하는 핵심부품이다. 이러한 저가의 경량/박형화 분리판 개발의 전제 조건은 연료전지 스택에서 요구하는 다양한 물성, 장기 수명 및 신뢰성을 나타내는 내구성을 만족해야 하는 것이다. 본고에서는 지금까지의 수소연료전지, 특히 고분자전해질 연료전지를 중심으로 분리판에서 사용되는 소재 및 제조공정기술의 현황, 분리판 개발에서 요구되는 다양한 기술적인 요소 및 그 문제점을 중심으로 살펴봄으로써 고성능, 고내구성 분리판 소재 및 제조공정 개발의 발전방향에 대하여 고찰하였다.

  • PDF

페로브스카이트 나노결정의 결점 엔지니어링 및 태양전지 응용 기술 (Defect Engineering of Metal Halide Perovskite Nanocrystals and Photovolatic Applciations)

  • 진해담;김미경;차정범;김민
    • 공업화학전망
    • /
    • 제24권5호
    • /
    • pp.30-46
    • /
    • 2021
  • 페로브스카이트 나노결정의 뛰어난 광전기적 특성과 표면 개질 용이성, 그리고 다양한 용액 공정 응용 가능성을 바탕으로 나노결정을 활용한 태양전지 응용 기술에 대한 연구가 폭넓게 진행되고 있다. 나노결정의 표면 및 결점 제어에 대한 화학적 이해와 공학적 제어 기술을 적용하여 다양한 광전소자의 효율을 향상시켜 왔으며, 최근 16.6% 광전효율의 페로브스카이트 나노결정 태양전지가 발표되었다. 나노결정을 태양전지에 활용하기 위해서는 광전특성 뿐만 아니라 연속적인 구동 안정성이 확보되어야 하며, 이를 위해서는 나노결정의 반응성이 높은 표면을 효율적으로 개질해야 한다. 이 총설에서는 페로브스카이트 나노결정의 표면 화학에 대한 기본 이해와 이를 제어하기 위한 리간드 치환 방법, 그리고 나노결정을 태양전지에 적용하기 위한 공학적 접근법에 대한 다양한 연구를 소개하고자 한다.

요철 구조를 가지는 유리 기판을 이용한 고효율 태양전지모듈

  • 공대영;김동현;조준환;정동건;오정화;김봉환;조찬섭;배영호;이종현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.417-419
    • /
    • 2011
  • 태양전지 모듈은 back sheet, 후면 충진재, 태양전지 cell, 전면 충진재, 전면 보호유리의 구성으로 되어 있다. back sheet는 유리 또는 금속을 사용하는데 사용 재료에 따라 각각 유리봉입방식, 슈퍼스트레이트방식으로 구분된다[1]. 태양전지를 보호하기 위한 충진재는 빛의 투과율 저하가 적은 PVB(Poly Vinyl Butylo)나 내습성이 뛰어난 EVA(Ethylene Vinyl Acetate) 등이 주로 이용된다. 유리봉입방식과 슈퍼스트레이트 방식의 공통점은 모듈 전면에 투과율과 내?충격 강도가 좋은 강화 유리를 사용하는 것이다. 하지만 현재 모듈의 전면 유리는 평탄한 표면 때문에 태양고도가 낮을 때 상대적으로 반사율이 높은 단점을 가지고 있다[2]. 이러한 문제점을 해결하기 위한 방안으로 표면 유리에 요철(anti-glare) 구조를 형성하면 평면 구조의 표면에서 반사되는 태양광이 일부 태양전지 내부로 재입사가 일어나게 되어 표면 반사율이 낮아지게 되고, 이로 인하여 태양전지의 효율이 증가하게 된다. 특히 이러한 효과는 태양고도가 낮아졌을 때 요철(anti-glare) 구조에 의한 반사율의 감소가 증가하기 때문에 평면 구조보다 요철(anti-glare) 구조의 태양전지 모듈 효율이 향상될 것이다. 본 논문에서는 요철(anti-glare) 구조를 만들기 위해서 유리와 평면 구조의 유리에서의 반사율과 투과율을 측정하여 비교 분석하였고, 특히 태양고도의 고도가 변할 때를 비교하기 위하여 반사율 및 투과율을 측정 할 때 입사광의 각도를 변화시켰다. 그리고 태양전지 cell 위에 요철(anti-glare) 구조의 유리와 평명 구조의 유리를 각각 위치시킨 후 태양전지 cell의 효율변화를 확인하였다. 이때 태양전지 cell의 표면은 이방성 식각 용액을 이용하여 역피라미드 구조의 텍스쳐링 태양전지 cell과 평면 구조의 태양전지 cell을 각각 사용하여 비교하였다.

  • PDF