• Title/Summary/Keyword: 전지성

Search Result 2,800, Processing Time 0.035 seconds

Development and Application of Earth Science Module Based on Earth System (지구계 주제 중심의 지구과학 모듈 개발 및 적용)

  • Lee, Hyo-Nyong;Kwon, Young-Ryun
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.175-188
    • /
    • 2008
  • The purposes of this study were to develop an Earth systems-based earth science module and to investigate the effects of field application. The module was applied to two classrooms of a total of 76 second-year high schoolers, in order to investigate the effectiveness of the developed module. Data was collected from observations in earth science classrooms, interviews, and questionnaires. The findings were as follows. First, the Earth systems-based earth science module was designed to be associated with the aims of the national Earth Science Curriculum and to improve students' Earth science literacy. The module was composed of two sections for a total of seven instructional hours for high schoolers. The former sections included the understanding of the Earth system through the understanding of each individual component of the system, its characteristics, properties and structure. The latter section of the module, consisting of 4 instructional hours, dealt with earth environmental problems, the understanding of subsystems changing through natural processes and cycles, and human interactions and their effects upon Earth systems. Second, the module was helpful in learning about the importance of understanding the interactions between water, rock, air, and life when it comes to understanding the Earth system, its components, characteristics, and properties. The Earth systems-based earth science module is a valuable and helpful instructional material which can enhance students' understanding of Earth systems and earth science literacy.

Analysis of Indicator Microorganism Concentration in the Rice Cultural Plot after Reclaimed Water Irrigation (하수처리수 관개후 벼재배 시험구에서 지표미생물 거동 분석)

  • Jung, Kwang-Wook;Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.112-121
    • /
    • 2004
  • A study was performed to examine the effects of UV-disinfected reclaimed water on microorganism concentration during rice culture. Four treatments were used and each one was triplicated to evaluate the changes of microorganism concentrations: stream water irrigation (STR), biofilter effluent irrigation (BE), UV-disinfected water irrigation with dose of 6 mW ${\cdot}$ s $cm{-2}$ (UV-6), and UV-disinfected water irrigation with dose of 16 mW ${\cdot}$ s $cm{-2}$ (UV-16). The indicator microorganisms of interest were total coliform (TC), fecal coliform (FC), and E. coli. The biofilter effluent from 16-unit apartment sewage treatment plant was used as reclaimed water and flowthrough type UV-disinfection system was used. Concentrations of indicator microorganisms in the treatment plots ranged from $10^2$ to $10^5$ MPN/100 mL during 24 hours after irrigation in May and June, where initial irrigation water for transplanting reparation was biofilter-effluent without UV-disinfection. It implies that initial irrigation using only non-disinfected reclaimed water for puddling in paddy field can be health-concerned because of more chance of farmer's physical contact with elevated concentration of microorganisms. The concentrations of microorganisms varied widely with rainfall, and treatments using UV-disinfected water irrigation showed significantly lower concentrations than others and their levels were within the range of paddy rice field with normal surface water irrigation. The mean concentrations of STR and BE during growing season were in the range of 4 ${\times}\;10^3$ MPN/100 mL for TC, and 2${\times}\;10^3$ MPN/100 mL for FC and E, Coli, While mean concentrations of UV-S and UV-lS were less than 1${\times}\;10^3$ MPN/100 mL for all the indicator microorganisms. Overall, UV-disinfection was thought to be feasible and practical alternative for agricultural reuse of secondary level effluent in Korea.

Properties of Organic-Inorganic Protective Films on Flexible Plastic Substrates by Spray Coating Method (연성 플라스틱 기판위에 스프레이 코팅방법으로 제조한 유·무기 보호막의 특성)

  • Lee, Sang Hee;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.79-84
    • /
    • 2017
  • The solar cells should be protected from the moisture and oxygen in order to sustain the properties and reliability of the devices. In this research, we prepared the protection films on the flexible plastic substrates by spray coating method using organic-inorganic hybrid solutions. The protection characteristics were studied depending on the various process conditions (nozzle distance, thicknesses of the coatings, film structures). The organic-inorganic solutions for the protection film layer were synthesized by addition of $Al_2O_3$ ($P.S+Al_2O_3$) and $SiO_2$ ($P.S+SiO_2$) nano-powders into PVA (polyvinyl alcohol) and SA (sodium alginate) (P.S) organic solution. The optical transmittances of the protection film with the thicknesses of $5{\mu}m$ showed 91%. The optical transmittance decreased from 81.6% to 73.6% with the film thickness increased from $78{\mu}m$ to $178{\mu}m$. In addition, the protective films were prepared on the PEN (polyethylene naphthalate), PC (polycarbonate) single plastic substrates as well as the Acrylate film coated on PC substrate (Acrylate film/PC double layer), and $Al_2O_3$ film coated on PEN substrate ($Al_2O_3$ film/PEN double layer) using the $P.S+Al_2O_3$ organic-inorganic hybrid solutions. The optimum protection film structure was studied by means of the measurements of water vapor transmittance rate (WVTR) and surface morphology. The protective film on PEN/$Al_2O_3$ double layer substrate showed the best water protective property, indicating the WVTR value of $0.004gm/m^2-day$.

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling (3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석)

  • Yang, Seungwon;Park, Joonam;Byun, Seoungwoo;Kim, Nayeon;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2020
  • Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.

Effects of Encapsulation Layer on Center Crack and Fracture of Thin Silicon Chip using Numerical Analysis (봉지막이 박형 실리콘 칩의 파괴에 미치는 영향에 대한 수치해석 연구)

  • Choa, Sung-Hoon;Jang, Young-Moon;Lee, Haeng-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, there has been rapid development in the field of flexible electronic devices, such as organic light emitting diodes (OLEDs), organic solar cells and flexible sensors. Encapsulation process is added to protect the flexible electronic devices from exposure to oxygen and moisture in the air. Using numerical simulation, we investigated the effects of the encapsulation layer on mechanical stability of the silicon chip, especially the fracture performance of center crack in multi-layer package for various loading condition. The multi-layer package is categorized in two type - a wide chip model in which the chip has a large width and encapsulation layer covers only the chip, and a narrow chip model in which the chip covers both the substrate and the chip with smaller width than the substrate. In the wide chip model where the external load acts directly on the chip, the encapsulation layer with high stiffness enhanced the crack resistance of the film chip as the thickness of the encapsulation layer increased regardless of loading conditions. In contrast, the encapsulation layer with high stiffness reduced the crack resistance of the film chip in the narrow chip model for the case of external tensile strain loading. This is because the external load is transferred to the chip through the encapsulation layer and the small load acts on the chip for the weak encapsulation layer in the narrow chip model. When the bending moment acts on the narrow model, thin encapsulation layer and thick encapsulation layer show the opposite results since the neutral axis is moving toward the chip with a crack and load acting on chip decreases consequently as the thickness of encapsulation layer increases. The present study is expected to provide practical design guidance to enhance the durability and fracture performance of the silicon chip in the multilayer package with encapsulation layer.

Virus Disease Incidences and Transmission Ecology of Oriental Melons in Seongju Area (성주지역 참외 바이러스병의 발생실태와 전염생태)

  • Park, Seok-Jin;Lee, Joong-Hwan;Nam, Moon;Park, Chung-Youl;Kim, Jeong-Seon;Lee, Joo-Hee;Jun, Eun-Suk;Lee, Jun-Seong;Choi, Hong-Soo;Kim, Jeong-Soo;Moon, Jae-Sun;Kim, Hong-Gi;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.342-350
    • /
    • 2011
  • Throughout the years 2008 to 2010, we analyzed approximately two thousand oriental melon samples collected from Seongju, using electron microscopy and testing by RT-PCR using primers specific for eight cucurbit-infecting viruses. Data from RT-PCR indicated that Cucumber green mottle mosaic virus (CGMMV), Watermelon mosaic virus 2 (WMV2) and Zucchini yellow mosaic virus (ZYMV) were present and the other viruses were not detected. Among them, CGMMV and WMV2 were the most prevalent pathogens. CGMMV was thought to infect oriental melon from the early growing season, and reached nearly 100% in the later of growing period. Otherwise, WMV2 emerged from June, several months later compared to CGMMV. CGMMV was detected from all aerial parts of the oriental melon including seeds, but not from the roots of the grafted pumpkin rootstock. Seed of two out of five commercial varieties were shown to be CGMMV positive. Nine varieties of pumpkins used as rootstocks were not infected with CGMMV. When the seedlings of grafted oriental melon were transplanted into pots mixed with the oriental melon debris infected with CGMMV, they were not infected by CGMMV. Cutting of pruning shear and the contact of tendrils contributed 48% and 30% to the transmission of the virus, respectively.

Accuracy of the 24-hour diet recall method to determine energy intake in elderly women compared with the doubly labeled water method (에너지 섭취 조사를 위한 24시간 회상법의 정확도 평가: 여자노인을 대상으로 이중표식수법을 이용하여)

  • Park, Kye-Wol;Go, Na-Young;Jeon, Ji-Hye;Ndahimana, Didace;Ishikawa-Takata, Kazuko;Park, Jonghoon;Kim, Eun-Kyung
    • Journal of Nutrition and Health
    • /
    • v.53 no.5
    • /
    • pp.476-487
    • /
    • 2020
  • Purpose: This study evaluated the accuracy of the 24-hour diet recall method for estimating energy intakes in elderly women using the doubly labeled water (DLW) method. Methods: The subjects were 23 elderly women with a mean age of 70.3 ± 3.3 years and body mass index (BMI) of 23.9 ± 2.8 kg/㎡. The total energy expenditure (TEEDLW) was determined by using the DLW and used to validate the 24-hour diet recall method. The total energy intake (TEI) was calculated from the 24-hour diet recall method for three days. Results: TEI (1,489.6 ± 211.1 kcal/day) was significantly lower than TEEDLW (2,023.5 ± 234.9 kcal/day) and was largely under-reported by -533.9 ± 228.0 kcal/day (-25.9%). The accurate prediction rate of elderly women in this study was 8.7%. The Bland-Altman plot, which was used to evaluate the TEI and the TEEDLW, showed that the agreement between them was negatively skewed, ranging from -980.8 kcal/day to -86.9 kcal/day. Conclusion: This study showed that the energy intake of elderly women was underreported. Strategies to increase the accuracy of the 24-hour diet recall methods in the elderly women should be studied through analysis of factors that affect underreporting rate. Further studies will be needed to assess the validity of the 24-hour diet recall method in other population groups.

Immunohistochemical Identification of the Two Forms of Gonadotropin Releasing Hormones (sGnRH, cGnRH-II) in Spotted Sea Bass (Lateolabrax sp.) Brain (면역조직화학법을 이용한 점농어 (Lateolabrax sp.) 뇌에서 두 종류 (sGnRH, cGnRH-II) 의 생식소자극호르몬 분비호르몬의 동정)

  • KIM Jung-Woo;LEE Won-Kyo;YANG Seok-Woo;JEONG Kwan-Sik;CHO Yong-Chul;RHO Yong-Gil;BANG In-Chul;KIM Kwang-Soo;KIM Sang-Koo;YOO Myung-Sik;KWON Hyuk-Bang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.266-270
    • /
    • 1999
  • Two forms of gonadotropin releasing hormone (GnRH) are identified in the brain of adult mature spotted sea bass (Lateolabrax sp.) by immunohistochemical methods. Salmon GnRH immunoreactive (sGnRH-ir) cell bodies were distributed in the olfactory bulb, ventral telencephalon and preoptic region. Immunoreactive fibers were observed in the vicinity of the brain including the olfactory bulbs, the telencephalon, the optic nerve, the optic tectum, the cerebellum, the medulla oblongata and rostral spinal cord. In most cases, these fibers did not form well defined bundles. However, there was a clear continuum of immunoreactive fibers, extending from the olfactory bulbs to the pituitary. cGnRH-II-ir cell bodies were only found in olfactory bulbs. However, the distribution of cGnRH-II-ir fibers was basically similar to that of sGnRH-ir fibers except for the absence of their continuity between the olfactory bulbs and the pituitary. These data suggest that sGnRH and cGnRH-II are endogenous peptides and indicate the presence of multiple neuroendocrine functions in the brain of the spotted sea bass. It seems that sGnRH not only regulates GTH secretion but also functions as a neurotransmitter, whereas cGnRH-II functions only as a neurotransmitter.

  • PDF

Case Study on Determination of the Level of New RoHS II Substances in Domestic Electronic and Electrical Equipments (국내 전기전자 제품에 함유된 신규 RoHS II 물질 검출 사례 연구)

  • Song, Moon-Hwan;Son, Seung-Hwan;Cho, Young-Dal;Choe, Eun-Kyung
    • Clean Technology
    • /
    • v.17 no.2
    • /
    • pp.124-133
    • /
    • 2011
  • In addition to six substances regulated in EU RoHS including lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), priority substances are identified in new RoHS II as hexabromocyclododecane (HBCDD), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP) and diethylhexyl phthalate (DEHP). In this study, 20 plastic samples were collected from 12 domestic electrotechnical companies and levels of four restricted substances were determined by gas chromatography-mass spectrometry, Among 20 parts that compose washer, refrigerator or microwave oven, HBCDD was detected in three samples of NBR material with the amount of 42~381 mg/kg while DBP and BBP was not detected in any samples collected respectively, implying that these substance may not be used widely in plastic materials for EEE. However, DEHP was detected in all samples of NBR, PP, PBT, EPDM and PVC materials with the amount of 42 up to 59,400 mg/kg that exceeds the limit value of 0.1 wt% (1,000 mg/kg). Presence of a restricted substance in polymer material makes a great negative influence on a number of final product. To cope with coming RoHS II as well as REACH, action not to use DEHP in plastic material or the relevant notification in case of REACH seems to be needed. Screening test of Arsenic compounds such as diarsenic pentaoxide, diarsenic trioxide, lead hydrogen arsenate, triethyl arsenate that are included in REACH SVHC was done by ICP measurement Arsenium was detected in four samples made of NBR and PBT materials in the level of 15~700 mg/kg. By considering the screening method used in this study, the amount of arsenium compounds in the thermistor made of PBT material has a high chance of exceeding the regulated limit value.

Validation of Satellite SMAP Sea Surface Salinity using Ieodo Ocean Research Station Data (이어도 해양과학기지 자료를 활용한 SMAP 인공위성 염분 검증)

  • Park, Jae-Jin;Park, Kyung-Ae;Kim, Hee-Young;Lee, Eunil;Byun, Do-Seong;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.469-477
    • /
    • 2020
  • Salinity is not only an important variable that determines the density of the ocean but also one of the main parameters representing the global water cycle. Ocean salinity observations have been mainly conducted using ships, Argo floats, and buoys. Since the first satellite salinity was launched in 2009, it is also possible to observe sea surface salinity in the global ocean using satellite salinity data. However, the satellite salinity data contain various errors, it is necessary to validate its accuracy before applying it as research data. In this study, the salinity accuracy between the Soil Moisture Active Passive (SMAP) satellite salinity data and the in-situ salinity data provided by the Ieodo ocean research station was evaluated, and the error characteristics were analyzed from April 2015 to August 2020. As a result, a total of 314 match-up points were produced, and the root mean square error (RMSE) and mean bias of salinity were 1.79 and 0.91 psu, respectively. Overall, the satellite salinity was overestimated compare to the in-situ salinity. Satellite salinity is dependent on various marine environmental factors such as season, sea surface temperature (SST), and wind speed. In summer, the difference between the satellite salinity and the in-situ salinity was less than 0.18 psu. This means that the accuracy of satellite salinity increases at high SST rather than at low SST. This accuracy was affected by the sensitivity of the sensor. Likewise, the error was reduced at wind speeds greater than 5 m s-1. This study suggests that satellite-derived salinity data should be used in coastal areas for limited use by checking if they are suitable for specific research purposes.