• Title/Summary/Keyword: 전지구

Search Result 469, Processing Time 0.042 seconds

Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성)

  • Cho, Young-Jai;Wee, Sung-Dong;Kim, Sang-Ki;Gu, Hal-Bon;Gu, Jong-Uk;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Electrochemical Properties of Dye-sensitized Solar Cells with Improving the Surface Structure (표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.153-158
    • /
    • 2012
  • We use UV(ultraviolet)-$O_3$ treatment to increase the surface area and porosity of $TiO_2$ films in dye-sensitized solar cells (DSSCs). After the UV-$O_3$ treatment, surface area and porosity of the $TiO_2$ films were increased, the increased porosity lead to amount of dye loading and solar conversion efficiency was improved. Field emission scanning electron microscopy images clearly showed that the nanocrystalline porosity of films were increased by UV-$O_3$ treatment. The Brunauer, Emmett, and Teller surface area of the $TiO_2$ films were increased from $0.71cm^2/g$ to $1.31cm^2/g$ by using UV-$O_3$ treatment for 20 min. Also, UV-$O_3$ treatment of $TiO_2$ films significantly enhanced their solar conversion efficiency. The efficiency of the films without treatment was 4.9%, and was increased to 5.6% by UV-$O_3$ treatment for 20 min. Therefore the process enhanced the solar conversion efficiency of DSSCs, and can be used to develop high sensitivity DSSCs.

Gravitational deflection analysis for the shielded slot plate with many tiny structures (미세 구조물이 성형된 쉴드슬롯판의 자중 처짐 해석)

  • Lee S.W.;Shim U.T.;Lee K.S.;Woo D.U.;Kim J.H.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.291-297
    • /
    • 2006
  • In this study, the equivalent physical properties of the shielded slot plate having a lot of very tiny bridge shape structures on its plane were determined by tensile tests and structural analyses. With those results, numerical analyses for the deflection profile by gravity effect were carried out to compare with experimental results. The two results were shown coincident very well so that the estimated equivalent physical properties were verified enough for further studies such as curvature reduction for the shielded slot plate.

  • PDF

A Study on preparation and chargy/discharge characteristics of cathode active material $LiCo_{1-x}Ni_{x}O_2$ for Li rechargeable batteries (리튬 2차 전지용 정극 활물질 $LiCo_{1-x}Ni_{x}O_2$의 제조와 충방전 특성)

  • 정인성;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.340-342
    • /
    • 1995
  • We prepared $LiCo_{1-x}Ni_{x}O_2$ by reacting stoichiometric mixture of LiOH.$H_2O$, $CoCO_3$.$xH_2O$ and $Ni(OH)_2$(mole ratio respectively) and heating at $850^{\circ}C$ for 5n. In the result of X-ray diffraction analysis, along fluctuation of the function of x in $LiCo_{1-x}Ni_{x}O_2$(003) peak and (104) peak indensities and ratio were varied. We awared through XRD that from 0 to 0.5 at x in $LiCo_{1-x}Ni_{x}O_2$ is well formed for hexagonal structure at one step heat treatment($850^{\circ}C$), but if Ni involve at $LiCo_{1-x}Ni_{x}O_2$ hexagonal structure is not well formed. In the result of charge/discharge tests charge/discharge capacity and effiency is different about various cathode. Therefore, the appropriate charge/discharge method must be selected for good characteristics.

  • PDF

Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성)

  • 조영재;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

X-ray diffraction and electrochemical properties of cathode active material LiMn$_2$O$_4$ for Lithium rechargeable batteries (리튬 2차 전지용 정극 활물질 LiMn$_2$O$_4$의 X-선 회절 분석 및 전기화학적 특성)

  • 정인성;성창호;박계춘;박복기;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.107-110
    • /
    • 1997
  • LiMn$_2$O$_4$ is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$ (mole ratio 1 ; 1) and heating at 80$0^{\circ}C$, $700^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. We obtained through X-ray diffraction that lattice parameter varied as function of calcined temperature and time. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, (111)/(311) peak ratio was 0.37. It showed good charge/discharge characteristics. When (111)/(311) peak ratio was 0.37, it was that crystal structure is formed very well. In the result of charge/discharge test, when heated at 80$0^{\circ}C$ for 36h, charge/discharge characteristics of LiMn$_2$O$_4$ is the best.

  • PDF

Enhanced Electrochemical Properties of Dye-sensitized Solar Cells Using Flexible Stainless Steel Mesh Electrodes with Ti Protective Layer (Ti 보호층이 형성된 스테인레스 스틸 메쉬 전극을 이용한 염료감응형 태양전지의 전기 화학적 특성 개선)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.180-184
    • /
    • 2015
  • Stainless steel (SS) mesh was used to fabricate photoelectrode for flexible dye-seisitzed solar cells (DSSCs) in order to evaluate them as replacements for more expensive transparent conductive oxide(TCO). We fabricated the DSSCs with new type of photoelectrode, which consisted of flexible SS mesh coated with 100 nm thickness titanium (Ti) protective layer deposited using electron-beam deposition system. SS mesh DSSCs with protective layer showed higher efficiency than those without a protective layer. The best cell property in the present study showed the open circuit voltage (Voc) of 0.608 V, short-circuit current density (Jsc) of $5.73mA\;cm^{-2}$, fill factor (FF) of 65.13%, and efficiency (${\eta}$) of 2.44%. Compared with SS mesh based on DSSCs (1.66%), solar conversion of SS mesh based on DSSCs with protective layer improved about 47%.

Optimization of $Alq_3$-coated FTO substrate for high efficient of DSSC (염료감응형 태양전지의 고효율화를 위한 $Alq_3$가 코팅된 FTO기판 제작)

  • Park, A-Reum;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.241-241
    • /
    • 2010
  • Recently high and persistent spontaneous buildup of a surface potential (SP) upon vacuum deposition of tris (8-hydroxyquinolinato) aluminum (III) ($Alq_3$), which is widely used for organic light emitting devices. The removal of the giant surface potential by visible light irradiation has also been reported. In this study, we coated $Alq_3$ on the FTO substrate and raise the capacity for absorbing sun light. The $Alq_3$ which is green light emitting diode emits light at wavelengths between 500 and 550nm. If we apply one's FTO/$Alq_3$ substrate in one's DSSC, we could get higher energy conversion efficiency because the N719 dye that we used for fabricating the DSSC emits light just at near 540nm. The energy conversion efficiency of approximately 4.8 % at the condition of irradiation of AM 1.5 (100 mW/$cm^2$) simulated sunlight, and the $J_{sc}$ is 12.0 mA/$cm^2$, $V_{oc}$ is 0.71 V, FF is 0.56, respectively.

  • PDF

Light Scattering Effect Based Silica in Dye-sensitized $TiO_2$ Photovoltaic Cells ($TiO_2$ 광전극의 광산란 특성을 이용한 염료감응형 태양전지)

  • Wang, Jiao;Jin, En Mei;Zhao, Xingguan;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.213-213
    • /
    • 2010
  • In this thesis, we studied to increased to solar conversion efficiency of DSSC (dye-sensitized solar cell) using nanocrystalline $TiO_2$ semiconductor. We are preparation of $TiO_2$ photoelectrode, assembly the DSSC and put a focus in analyses electrochemical properties of DSSC and using Silica powder in $TiO_2$ photoelectrode for increase light scattering effect and improved conversion efficiency. It attempt to investigate the morphology of the photoelectrode and photovoltaic effects using field emission scanning electron microscopy (FE-SEM) and photovoltaic properties under illumination with AM 1.5 simulated sunlight. We got 146 % enhanced power conversion efficiency when the optimal content of quartz glass powder was 5 wt.% than that another content.

  • PDF