• Title/Summary/Keyword: 전자 재료

Search Result 17,293, Processing Time 0.043 seconds

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Study of endodontic working length of Korean posterior teeth (한국인의 구치부 근관작업장에 관한 연구)

  • Kim, Jeong-Yeob;Lee, Sang-Hoon;Lee, Gwang-Hee;Park, Sang-Hyuk
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.6
    • /
    • pp.429-435
    • /
    • 2010
  • Objectives: The aim of this study was to investigate average working lengths of Korean posterior teeth and evaluate validity of endodontic file length. Materials and Methods: The endodontic working length of the posterior teeth of 670 Korean patients were measured than each mean value and standard deviation were investigated than the frequency deviation and standard deviation per each length were calculated. Results: Among the canals of premolar, 66.5% of canal length was marked under 20 mm by endodontic working length and 95.4% could be measured under 22 mm and Among the canals of molars, 95.5% of canal length was marked under 20 mm endodontic working length. Conclusions: With the result of measurement of endodontic working length of premolars of Korean, it suggested that 23 mm endodontic file is more proper than the 21 mm and 25 mm file on the market.

Microshear bond strength of a flowable resin to enamel according to the different adhesive systems (접착시스템의 종류에 따른 유동성 레진과 법랑질의 미세전단 결합강도)

  • Kim, Jeong-Ho;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.50-58
    • /
    • 2011
  • Objectives: The purpose of this study was to compare the microshear bond strength (uSBS) of two totaletch and four self-etch adhesive systems and a flowable resin to enamel. Materials and Methods: Enamels of sixty human molars were used. They were divided into one of six equal groups (n = 10) by adhesives used; OS group (One-Step Plus), SB group (Single Bond), CE group (Clearfil SE Bond), TY group (Tyrian SPE/One-Step Plus), AP group (Adper Prompt L-Pop) and GB group (G-Bond). After enamel surfaces were treated with six adhesive systems, a flowable composite resin (Filek Z 350) was bonded to enamel surface using Tygon tubes. the bonded specimens were subjected to uSBS testing and the failure modes of each group were observed under FE-SEM. Results: 1. The uSBS of SB group was statistically higher than that of all other groups, and the uSBS of OS, SE and AP group was statistically higher than that of TY and GB group (p < 0.05). 2. The uSBS for TY group was statistically higher than that for GB group (p < 0.05). 3. Adhesive failures in TY and GB group and mixed failures in SB group and SE group were often analysed. One cohesive failure was observed in OS, SB, SE and AP group, respectively. Conclusions: Although adhesives using the same step were applied the enamel surface, the uSBS of a flowable resin to enamel was different.

내장형 선형 ICP(Inductively Coupled Plasma) system에서 자장이 플라즈마와 PR 식각특성에 미치는 영향

  • 김경남;이영준;경세진;염근영
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.3-3
    • /
    • 2003
  • 고밀도 플라즈마를 생산할 수 있는 대면적용 플라즈마 소스의 개발은 미세전자구조 산업에서부터 FPD 산업에 이르기까지 많은 영역에 걸쳐 필수 불가결한 기술요소가 되어가고 있 다. 이러한 대면적용 고밀도 플라즈마에의 적용을 위하여 새로운 유도결합형 플라즈마 소오스의 개발이 진행되고 있으며, 차세대 반도체 식각 및 세정 공정을 위하여 여러 형태의 안 테나가 연구되어지고 있다. 그러나 TFT -LCD에 적용이 가능하게끔 기존의 ICP 소오스를 직 접적으로 대면적화 하는 데에는 여러 가지 문제점들로 인해 그 한계점이 들어났다. 그 예로 안테나의 길이가 길어짐에 따른 안테나 저항 값이 커지며, 안테나 소스 길이자체가 사용하는 인가전력(13.56MHz)의 반파장에 해당되는 길이가 되었을 경우 생기는 심각한 정상파 효과, 유전물질의 두께 증가 및 그에 따른 재료비의 상승 및 관리상의 어려움들이 바로 그것 이라 할 수 있겠다. 그러므로, 본 연구에서는 차세대 TFT -LCD 대면적 공정에 적용 가능한 고밀도 플라즈마 를 발생시키기 위해서 내장형 유도결합형 선혈 안테나를 사용하였다. 내장형 유도결합형 선 혈 안테나가 가지고 있는 고유의 정전기적 결합효과를 최소화시키기 위해 직사각형모앙의 플라즈마 댐버(830mm*1,020mm)에서 영구자석을 사용하여 multi-cusp 자장효과 및 다양 한 자장의 배열에 따른 플라즈마 특성변화를 살펴보았다. 영구자석을 사용하여 외부자장을 인가하였을 때가, 그럴지 않은 때보다 RF 안테나 코일의 전압을 낮춰주었으며, 영구자석의 배열에 따라 코일의 인덕턴스의 값이 크게 변함을 알 수 있었다. 그리고 최적화된 자장의 배열은 플라즈마의 이온밀도를 증가시켰으며, 플라즈마의 균일도도 10% 이내로 유지됨을 알 수 있었다. 또한 영구자석에 의한 자장의 유무 및 공정압력과 인가전력에 따른 P Photoresist Film의 식각특성에 관해 살펴보았다.증을 위한 실험.측정장비의 구입 및 업계와의 공동활용, 국내.외 최신기술 정보자료의 수집과 신속제공, 국내.외 전문가 초청 활 용, 미래 지향적 목적활용 기초연구사업 수행, 미래기술 동향예측 및 홍보 등을 통해 서 국내 도금기술의 기술자립 및 고도화를 위한 여건마련을 위하여 노력하고 있다.빛 이때의 부식속도(선형분극법), 인위적인 피막 파괴 전,후 의 전위 변화 및 부식속도 측정법에 의한 국부부식 발달 저지능 등을 평가하여 각 실험결과를 비교분석하여 보았다. 수록 민감하여 304 의 IGSCC 와 매우 유사한 거동을 보인다. 본 강연에서는 304 와 600 의 고온 물에서 일어나는 IGSCC 민감도에 미치는 환경, 예민화처리, 합금원소의 영향을 고찰하고 이에 대한 최근의 연구 동향과 방식 방법을 다룬다.다.의 목적과 지식)보다 미학적 경험에 주는 영향이 큰 것으로 나타났으며, 모든 사람들에게 비슷한 미학적 경험을 발생시키는 것 이 밝혀졌다. 다시 말하면 모든 사람들은 그들의 문화적인 국적과 사회적 인 직업의 차이, 목적의 차이, 또한 환경의 의미의 차이에 상관없이 아름다 운 경관(High-beauty landscape)을 주거지나 나들이 장소로서 선호했으며, 아름답다고 평가했다. 반면에, 사람들이 갖고 있는 문화의 차이, 직업의 차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도 $\ulcorner$순응$\lrcorner$$\ulcorner$표현$\lrcorner$

  • PDF

The effects of saline soaking on the removal torque of titanium implants in rabbit tibia after 10 days (0.9% 식염수 담금이 레이저 처리 임플란트의 초기 치유기간의 회전 제거력에 미치는 영향)

  • Park, Jung-Hyun;Cho, Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.328-334
    • /
    • 2019
  • Purpose: The aim of this study was to confirm if Laser-treated implants were soaked in 0.9% NaCl solution for 2 weeks could increase the surface hydrophilicity, and the Remoal Torque of each implant that inserted in rabbit tibia for initial healing period of 10 days. Materials and methods: Twenty machined titanium surface screws were produced with a diameter 3 mm, length 8 mm. Ten screws had their surface treated with a laser only (laser treated group), and the other 10 were soaked in saline for 2 weeks after surface treatment with a laser (laser treated + saline soaked group). Implants were inserted in rabbit tibia (ten adult New Zealand white rabbits), and the RTQ of each implant was measured after 10 days. The wettability among implants was compared by measuring the contact angle. Surface composition and surface topography were analyzed. Results: After 10 days, the laser treat + soaking group implants had a significantly higher mean RTQ than the laser treated implants (P = .002, < .05). There were no significant morphological differences between groups, and no remarkable differences were found between the two groups in the SEM analysis. Conclusion: Saline soaking implants is expected to produce excellent RTQ and surface analysis results.

Preparation and Characterization of Sponge Using Demineralized Bone Particle (탈미네랄화된 골분을 이용한 스폰지의 제조 및 특성 분석)

  • Jang, Ji-Wook;Baek, Mi-Ock;Kim, Soon-Hee;Choi, Jin-Hee;Yang, Jae-Chan;Hong, Hyun-Hye;Hong, Hee-Kyung;Rhee, John-M.;Min, Byoung-Hyun;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.33 no.2
    • /
    • pp.104-110
    • /
    • 2009
  • Demineralized boneparticle (DBP) has been widely used as and a powerful promoter of new bone growth. In this study, DBP sponges were chemically crosslinked and characterized for the potential application of tissue engineered scaffolds. The DBP sponges prepared by crosslinking with EDC. 0.1, 0.2 or 0.3% pepsin was applied to DBP dissolved in 3% (v/v) acetic acid aqueous solution for 48 hrs. The prepared sponges were crosslinked by 1, 5, 10, 50 or 100 mM of EDC solution concentration and then were lyophilized. The DBP sponges were characterized by SEM, FT-IR and DSC and analyzed in terms of their porosity and water absorption ability. The cellular viability and proliferation were assayed by MTT assay. Our investigation revealed that 0.2$\sim$0.3% of pepsin and 50$\sim$100 mM of EDC produced DBP sponges with good physical characteristics. In conclusion, DBP sponge prepared under these conditions is potentially useful for the applications of tissue construction.

Preparation and Characterization of PLGA Scaffold Impregnated Keratin for Tissue Engineering Application (케라틴이 함유된 조직공학적 PLGA 지지체의 제조 및 특성 분석)

  • Oh, A-Young;Kim, Soon-Hee;Lee, Sang-Jin;Yoo, James J.;Dyke, Mark van;Rhee, John M.;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.403-408
    • /
    • 2008
  • Keratin is the major structural fibrous protein providing outer covering such as wool, hair, and nail. Keratin is useful as natural protein. We developed the keratin loaded poly(L-lactide-co-glycolide) (PLGA) scaffolds (keratin/PLGA) for the possibility of the application of the tissue engineering using bone marrow mesenchymal (BMSCs). Keratin/PLGA (contents 0%, 10%, 20% and 50% of PLGA weight) scaffolds were prepared by solvent casting/salt leaching method. We characterized porosity, wettability, and water uptake ability, DSC of keratin/PLGA scaffold. We seeded BMSCs isolated from the femurs of rat into the inner core of the hybrid scaffold. Celluar viability were assayed by 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyl-tetrazolium bromide (MTT) test. We confirmed that keratin/PLGA scaffold is hydrophilic by wettability, and water uptake ability measurement results. In MTT assay results, cell viability in scaffolds impregnated 10 and 20 wt% of keratin were higher than other scaffolds. In conclusion, we suggest that keratin/PLGA scaffold may be useful to tissue engineering using BMSCs.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Selective Recovery of Platinum Group Metals by Solvent Extraction and Electrolysis in Non-aqueous Solution Based on Ionic Liquids (이온성액체 기반 비수계 용액에서 용매추출과 전해에 의한 백금족 금속의 분리회수)

  • Park, Gwang-won;Park, Jesik;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.46-53
    • /
    • 2019
  • In this study, the extraction and reduction behavior of platinum group metals in a non-aqueous solvent based on ionic liquids was investigated in order to confirm a new extraction technology of platinum group metals. Platinum was selectively extracted using an ionic liquid $[C_4mim]PF_6$ from a mixed solution of $PdCl_2$, $PtCl_4$ and $RhCl_3$ dissolved with concentration ratio of 10:1:0.5 M. After stripping of the metals by 1 M $HNO_3$ solution, the platinum was preferentially reduced by aqueous electrolysis on gold electrode at -0.8 V (vs. Pt-QRE). The residual palladium and rhodium were transferred to ionic liquid of $[C_4mim]Cl$. The metallic palladium and rhodium could be sequentially reduced on gold and STS304 as working electrodes by non-aqueous electrolysis, respectively.

Thermoelectric Properties of the Reaction Sintered n-type β-SiC (반응소결법으로 제조한 n형 β-SiC의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.29-34
    • /
    • 2019
  • Silicon carbide is considered to be a potentially useful material for high-temperature electronic devices, as its large energy band gap and the p-type and/or n-type conduction can be controlled by impurity doping. Particularly, electric conductivity of porous n-type SiC semiconductors fabricated from ${\beta}-SiC$ powder at $2000^{\circ}C$ in $N_2$ atmosphere was comparable to or even larger than the reported values of SiC single crystals in the temperature region of $800^{\circ}C$ to $1000^{\circ}C$, while thermal conductivity was kept as low as 1/10 to 1/30 of that for a dense SiC ceramics. In this work, for the purpose of decreasing sintering temperature, it was attempted to fabricate porous reaction-sintered bodies at low temperatures ($1400-1600^{\circ}C$) by thermal decomposition of polycarbosilane (PCS) impregnated in n-type ${\beta}-SiC$ powder. The repetition of the impregnation and sintering process ($N_2$ atmosphere, $1600^{\circ}C$, 3h) resulted in only a slight increase in the relative density but in a great improvement in the Seebeck coefficient and electrical conductivity. However the power factor which reflects the thermoelectric conversion efficiency of the present work is 1 to 2 orders of magnitude lower than that of the porous SiC semiconductors fabricated by conventional sintering at high temperature, it can be stated that thermoelectric properties of SiC semiconductors fabricated by the present reaction-sintering process could be further improved by precise control of microstructure and carrier density.