• Title/Summary/Keyword: 전자기법

Search Result 8,250, Processing Time 0.032 seconds

An adaptive digital watermark using the spatial masking (공간 마스킹을 이용한 적응적 디지털 워터 마크)

  • 김현태
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.3
    • /
    • pp.39-52
    • /
    • 1999
  • In this paper we propose a new watermarking technique for copyright protection of images. The proposed technique is based on a spatial masking method with a spatial scale parameter. In general it becomes more robust against various attacks but with some degradations on the image quality as the amplitude of the watermark increases. On the other hand it becomes perceptually more invisible but more vulnerable to various attacks as the amplitude of the watermark decreases. Thus it is quite complex to decide the compromise between the robustness of watermark and its visibility. We note that watermarking using the spread spectrum is not robust enought. That is there may be some areas in the image that are tolerable to strong watermark signals. However large smooth areas may not be strong enough. Thus in order to enhance the invisibility of watermarked image for those areas the spatial masking characteristics of the HVS(Human Visual System) should be exploited. That is for texture regions the magnitude of the watermark can be large whereas for those smooth regions the magnitude of the watermark can be small. As a result the proposed watermarking algorithm is intend to satisfy both the robustness of watermark and the quality of the image. The experimental results show that the proposed algorithm is robust to image deformations(such as compression adding noise image scaling clipping and collusion attack).

Development of deep learning network based low-quality image enhancement techniques for improving foreign object detection performance (이물 객체 탐지 성능 개선을 위한 딥러닝 네트워크 기반 저품질 영상 개선 기법 개발)

  • Ki-Yeol Eom;Byeong-Seok Min
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2024
  • Along with economic growth and industrial development, there is an increasing demand for various electronic components and device production of semiconductor, SMT component, and electrical battery products. However, these products may contain foreign substances coming from manufacturing process such as iron, aluminum, plastic and so on, which could lead to serious problems or malfunctioning of the product, and fire on the electric vehicle. To solve these problems, it is necessary to determine whether there are foreign materials inside the product, and may tests have been done by means of non-destructive testing methodology such as ultrasound ot X-ray. Nevertheless, there are technical challenges and limitation in acquiring X-ray images and determining the presence of foreign materials. In particular Small-sized or low-density foreign materials may not be visible even when X-ray equipment is used, and noise can also make it difficult to detect foreign objects. Moreover, in order to meet the manufacturing speed requirement, the x-ray acquisition time should be reduced, which can result in the very low signal- to-noise ratio(SNR) lowering the foreign material detection accuracy. Therefore, in this paper, we propose a five-step approach to overcome the limitations of low resolution, which make it challenging to detect foreign substances. Firstly, global contrast of X-ray images are increased through histogram stretching methodology. Second, to strengthen the high frequency signal and local contrast, we applied local contrast enhancement technique. Third, to improve the edge clearness, Unsharp masking is applied to enhance edges, making objects more visible. Forth, the super-resolution method of the Residual Dense Block (RDB) is used for noise reduction and image enhancement. Last, the Yolov5 algorithm is employed to train and detect foreign objects after learning. Using the proposed method in this study, experimental results show an improvement of more than 10% in performance metrics such as precision compared to low-density images.

Curvature stroke modeling for the recognition of on-line cursive korean characters (온라인 흘림체 한글 인식을 위한 곡률획 모델링 기법)

  • 전병환;김무영;김창수;박강령;김재희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.140-149
    • /
    • 1996
  • Cursive characters are written on an economical principle to reduce the motion of a pen in the limit of distinction between characters. That is, the pen is not lifted up to move for writing a next stroke, the pen is not moved at all, or connected two strokes chance their shapes to a similar and simple shape which is easy to be written. For these reasons, strokes and korean alphabets are not only easy to be changed, but also difficult to be splitted. In this paper, we propose a curvature stroke modeling method for splitting and matching by using a structural primitive. A curvature stroke is defined as a substroke which does not change its curvanture. Input strokes handwritten in a cursive style are splitted into a sequence of curvature strokes by segmenting the points which change the direction of rotation, which occur a sudden change of direction, and which occur an excessive rotation Each reference of korean alphabets is handwritten in a printed style and is saved as a sequence of curvature strikes which is generated by splitting process. And merging process is used to generate various sequences of curvature strikes for matching. Here, it is also considered that imaginary strokes can be written or omitted. By using a curvature stroke as a unit of recognition, redundant splitting points in input characters are effectively reduced and exact matching is possible by generating a reference curvature stroke, which consists of the parts of adjacent two korean alphasbets, even when the connecting points between korean alphabets are not splitted. The results showed 83.6% as recognition rate of the first candidate and 0.99sec./character (CPU clock:66MHz) as processing time.

  • PDF

A 1280-RGB $\times$ 800-Dot Driver based on 1:12 MUX for 16M-Color LTPS TFT-LCD Displays (16M-Color LTPS TFT-LCD 디스플레이 응용을 위한 1:12 MUX 기반의 1280-RGB $\times$ 800-Dot 드라이버)

  • Kim, Cha-Dong;Han, Jae-Yeol;Kim, Yong-Woo;Song, Nam-Jin;Ha, Min-Woo;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This work proposes a 1280-RGB $\times$ 800-Dot 70.78mW 0.l3um CMOS LCD driver IC (LDI) for high-performance 16M-color low temperature poly silicon (LTPS) thin film transistor liquid crystal display (TFT-LCD) systems such as ultra mobile PC (UMPC) and mobile applications simultaneously requiring high resolution, low power, and small size at high speed. The proposed LDI optimizes power consumption and chip area at high resolution based on a resistor-string based architecture. The single column driver employing a 1:12 MUX architecture drives 12 channels simultaneously to minimize chip area. The implemented class-AB amplifier achieves a rail-to-rail operation with high gain and low power while minimizing the effect of offset and output deviations for high definition. The supply- and temperature-insensitive current reference is implemented on chip with a small number of MOS transistors. A slew enhancement technique applicable to next-generation source drivers, not implemented on this prototype chip, is proposed to reduce power consumption further. The prototype LDI implemented in a 0.13um CMOS technology demonstrates a measured settling time of source driver amplifiers within 1.016us and 1.072us during high-to-low and low-to-high transitions, respectively. The output voltage of source drivers shows a maximum deviation of 11mV. The LDI with an active die area of $12,203um{\times}1500um$ consumes 70.78mW at 1.5V/5.5V.

A SOC Coefficient Factor Calibration Method to improve accuracy Of The Lithium Battery Equivalence Model (리튬 배터리 등가모델의 정확도 개선을 위한 SOC 계수 보정법)

  • Lee, Dae-Gun;Jung, Won-Jae;Jang, Jong-Eun;Park, Jun-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.99-107
    • /
    • 2017
  • This paper proposes a battery model coefficient correction method for improving the accuracy of existing lithium battery equivalent models. BMS(battery management system) has been researched and developed to minimize shortening of battery life by keeping SOC(state of charge) and state of charge of lithium battery used in various industrial fields such as EV. However, the cell balancing operation based on the battery cell voltage can not follow the SOC change due to the internal resistance and the capacitor. Various battery equivalent models have been studied for estimation of battery SOC according to the internal resistance of the battery and capacitors. However, it is difficult to apply the same to all the batteries, and it tis difficult to estimate the battery state in the transient state. The existing battery electrical equivalent model study simulates charging and discharging dynamic characteristics of one kind of battery with error rate of 5~10% and it is not suitable to apply to actual battery having different electric characteristics. Therefore, this paper proposes a battery model coefficient correction algorithm that is suitable for real battery operating environments with different models and capacities, and can simulate dynamic characteristics with an error rate of less than 5%. To verify proposed battery model coefficient calibration method, a lithium battery of 3.7V rated voltage, 280 mAh, 1600 mAh capacity used, and a two stage RC tank model was used as an electrical equivalent model of a lithium battery. The battery charge/discharge test and model verification were performed using four C-rate of 0.25C, 0.5C, 0.75C, and 1C. The proposed battery model coefficient correction algorithm was applied to two battery models, The error rate of the discharge characteristics and the transient state characteristics is 2.13% at the maximum.

An Immune-Electron Microscopic Study for Cluster Designation on the Phagocytic Synovial Cells in the Knee Joint of the Human (인체 무릎관절 윤활포식세포 cluster designation 표지에 관한 면역전자현미경적 연구)

  • Lim, Hyoung-Soo;Cho, Kook-Hyeung;Kim, Yong-Wook;Park, Kyeong-Han;Hwang, Young-Il;Chang, Ka-Young;Hwang, Douk-Ho
    • Applied Microscopy
    • /
    • v.30 no.2
    • /
    • pp.173-183
    • /
    • 2000
  • This study was designed to observe the ultrastructural localization of synoviocytes, which are concerned with the function of phagocytic synovial cells (type A synoviocytes, macrophage-like synoviocytes), in the knee joint of the human for CD14 and CD105 by cryo-immune-electron microscopic technique. The synovium were dissected and fixed for two hours (in 4% paraformaldehyde and 0.1% glutaraldehyde mixture), and were immerged in 2.3 M sucrose and 20% PVP solution. Finally, they were cut with the cryoultramicrotome and labelled with primary antibodies (monoclonal mouse anti-human CD14, monoclonal mouse anti-human CD105 (endoglin) and secondary (donkey anti-mouse IgG) tagged with 6 nm colloidal gold particles. The tissues were observed under transmission electron microscope. This study was resulted as follows. 1. In the synovium of the human knee joint, CD14+ cells were identified. These cells showed phagocytic synovial cell's features. In the phagocytic synoviocyte, the distributions of CD14 were marked in the cytoplasm, around vacuoles, and in cytoplasmic process, but not detected inside of vacuoles. 2. In the synovium of the human knee joint, CD105+ cells were identified. These cells were recognized endothelial cells and phagocytic synovial cells. In the phagocytic synovial cells, the distributions of CD105 (endoglin) were marked in cytoplasic process, around vacuoles, and in cell membrane, but not detected inside of vacuoles. On the basis of above findings, it is obvious that phagocytic synovial cells were marked at CD 14 and CD 105, and might be play the role of activated macrophages or phagocytes in the synovial membrane.

  • PDF

Tegumental ultrastructure of juvenile and adult Echinostoma cinetorchis (이전고환극구흡충 유약충 및 성충의 표피 미세구조)

  • 이순형;전호승
    • Parasites, Hosts and Diseases
    • /
    • v.30 no.2
    • /
    • pp.65-74
    • /
    • 1992
  • The tegumental ultrastructure of juvenile and adult Echinostoma cinetorchis (Trematoda: Echinostomatidae) was observed by scanning electron microscopy. Three-day (juvenile) and 16-day (adult) worms were harvested from rats (Sprague-Dawley) experimentally fed the metacercariae from the laboratory-infected fresh water snail, Hippeutis cantori. The worms were fifed with 2.5% glutaraldehyde, processed routinely, and observed by an ISI Korea DS-130 scanning electron microscope. The 3-day old juvenile worms were elongated and ventrally curved, with their ventral sucker near the anterior two-fifths of the body. The head crown was bearing 37∼38 collar spines arranged in a zigzag pattern. The lips of the oral and ventral suckers had 8 and 5 type II sensory papillae respectively, and bewteen the spines, a few type III papillae were observed. Tongue or spade-shape spines were distributed anteriorly to the ventral sucker, whereas peg-like spines were distributed posteriorly and became sparse toward the posterior body. The spines of the dorsal surface were similar to those of the ventral surface. The 16-day old adults were leaf-like, and their oral and ventral suckers were located very closely. Aspinous head crown, oral and ventral suckers had type II and type III sensory papillae, and numerous type I papillae were distributed on the tegument anterior to the ventral sucker. Scale-like spines, with broad base and round tip, were distributed densely on the tegument anterior to the ventral sucker but they became sparse posteriorly. At the dorsal surface, spines were observed at times only at the anterior body. The results showed that the tegument of E. cinetorchis is similar to that of other echinostomes, but differs in the number and arrangement of collar spines, shape and distribution of tegumenal spines, and type and distribution of sensory papillae.

  • PDF

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.

Real-Time Scheduling Scheme based on Reinforcement Learning Considering Minimizing Setup Cost (작업 준비비용 최소화를 고려한 강화학습 기반의 실시간 일정계획 수립기법)

  • Yoo, Woosik;Kim, Sungjae;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.15-27
    • /
    • 2020
  • This study starts with the idea that the process of creating a Gantt Chart for schedule planning is similar to Tetris game with only a straight line. In Tetris games, the X axis is M machines and the Y axis is time. It is assumed that all types of orders can be worked without separation in all machines, but if the types of orders are different, setup cost will be incurred without delay. In this study, the game described above was named Gantris and the game environment was implemented. The AI-scheduling table through in-depth reinforcement learning compares the real-time scheduling table with the human-made game schedule. In the comparative study, the learning environment was studied in single order list learning environment and random order list learning environment. The two systems to be compared in this study are four machines (Machine)-two types of system (4M2T) and ten machines-six types of system (10M6T). As a performance indicator of the generated schedule, a weighted sum of setup cost, makespan and idle time in processing 100 orders were scheduled. As a result of the comparative study, in 4M2T system, regardless of the learning environment, the learned system generated schedule plan with better performance index than the experimenter. In the case of 10M6T system, the AI system generated a schedule of better performance indicators than the experimenter in a single learning environment, but showed a bad performance index than the experimenter in random learning environment. However, in comparing the number of job changes, the learning system showed better results than those of the 4M2T and 10M6T, showing excellent scheduling performance.

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.