• Title/Summary/Keyword: 전자계 시뮬레이터

Search Result 24, Processing Time 0.019 seconds

Development of Real-Time Simulator for a Heavy Duty Diesel Engine (건설기계 디젤엔진용 실시간 시뮬레이터 개발)

  • Noh, Young Chang;Park, Kyung Min;Oh, Byoung Gul;Ko, Min Seok;Kim, Nag In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • Recently, the portion of electronic control in an engine system has been increasing with the aim of meeting the requirements of emissions and fuel efficiency of the engine system in the construction machinery industry. Correspondingly, the complexity of the engine management system (EMS) has increased. This study developed an engine HiLS system for reducing the cost and time required for function development for the EMS. The engine model for HiLS is composed of air, fuel, torque, and dynamometer models. Further, the mean value method is applied to the developed HiLS engine model. This model is validated by its application to a heavy-duty diesel engine equipped with an exhaust gas recirculation system and a turbocharger. Test results demonstrate that the model has accuracy greater than 90 and also verify the feasibility of the virtual calibration process.

A Study on Data Model Conversion Method for the Application of Autonomous Driving of Various Kinds of HD Map (다양한 정밀도로지도의 자율주행 적용을 위한 데이터 모델 변환 방안 연구)

  • Lee, Min-Hee;Jang, In-Sung;Kim, Min-Soo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.39-51
    • /
    • 2021
  • Recently, there has been much interest in practical use of standardized HD map that can effectively define roads, lanes, junctions, road signs, and road facilities in autonomous driving. Various kinds of de jure or de facto standards such as ISO 22726-1, ISO 14296, HERE HD Live map, NDS open lane model, OpenDRIVE, and NGII HD map are currently being used. However, there are lots of differences in data modeling among these standards, it makes difficult to use them together in autonomous driving. Therefore, we propose a data model conversion method to enable an efficient use of various kinds of HD map standards in autonomous driving in this study. Specifically, we propose a conversion method between the NGII HD map model, which is easily accessible in the country, and the OpenDRIVE model, which is commonly used in the autonomous driving industry. The proposed method consists of simple conversion of NGII HD map layers into OpenDRIVE objects, new OpenDRIVE objects creation corresponding to NGII HD map layers, and linear transformation of NGII HD map layers for OpenDRIVE objects creation. Finally, we converted some test data of NGII HD map into OpenDRIVE objects, and checked the conversion results through Carla simulator. We expect that the proposed method will greatly contribute to improving the use of NGII HD map in autonomous driving.

Direction-Embedded Branch Prediction based on the Analysis of Neural Network (신경망의 분석을 통한 방향 정보를 내포하는 분기 예측 기법)

  • Kwak Jong Wook;Kim Ju-Hwan;Jhon Chu Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.9-26
    • /
    • 2005
  • In the pursuit of ever higher levels of performance, recent computer systems have made use of deep pipeline, dynamic scheduling and multi-issue superscalar processor technologies. In this situations, branch prediction schemes are an essential part of modem microarchitectures because the penalty for a branch misprediction increases as pipelines deepen and the number of instructions issued per cycle increases. In this paper, we propose a novel branch prediction scheme, direction-gshare(d-gshare), to improve the prediction accuracy. At first, we model a neural network with the components that possibly affect the branch prediction accuracy, and analyze the variation of their weights based on the neural network information. Then, we newly add the component that has a high weight value to an original gshare scheme. We simulate our branch prediction scheme using Simple Scalar, a powerful event-driven simulator, and analyze the simulation results. Our results show that, compared to bimodal, two-level adaptive and gshare predictor, direction-gshare predictor(d-gshare. 3) outperforms, without additional hardware costs, by up to 4.1% and 1.5% in average for the default mont of embedded direction, and 11.8% in maximum and 3.7% in average for the optimal one.

Land Preview System Using Laser Range Finder based on Heave Estimation (Heave 추정 기반의 레이저 거리측정기를 이용한 선행지형예측시스템)

  • Kim, Tae-Won;Kim, Jin-Hyoung;Kim, Sung-Soo;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.64-73
    • /
    • 2012
  • In this paper, a new land preview system using laser range finder based on heave estimation algorithm is proposed. The proposed land preview system is an equipment which measures the shape of forward topography for autonomous vehicle. To implement this land preview system, the laser range finder is generally used because of its wide measuring range and robustness under various environmental condition. Then the current location of the vehicle has to be known to generate the shape of forward topography and sensors based on acceleration such as IMU and accelerometer are generally utilized to measure heave motion in the conventional land preview system. However the drawback to these sensors is that they are too expensive for low-cost vehicle such as mobile robot and their measurement error is increased for mobile robot with abrupt acceleration. In order to overcome this drawback, an algorithm that estimates heave motion using the information of odometer and previously measured topography is proposed in this paper. The proposed land preview system based on the heave estimation algorithm is verified through simulation and experiments for various terrain using a simulator and a real system.