• Title/Summary/Keyword: 전원제어장치

Search Result 600, Processing Time 0.038 seconds

Design of a Multi-Protocol Gateway System Based on Low Power Wireless Communications (저전력 무선통신 기반 다중 프로토콜 게이트웨이 시스템 설계)

  • Hong, Sung-IL;Lin, Chi-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.2006-2013
    • /
    • 2015
  • In this paper we propose a multi-protocol gateway system based on low power wireless communications. The proposed multi-protocol gateway system was designed to allow real-time monitoring and control of the on-site situation through wired and wireless networks by gathering information for streetlight power control and environmental monitoring. The sensing data using multi-sensors with composite processing that selectively used wired or wireless communication (e.g., CDMA, Ethernet (TCP/IP), GPS, etc.) were designed to act as intermediaries that transmitted to the main server through ZigBee. Inaddition, they were designed by separating a CPU board and baseboard to ensure low maintenance cost and ease of hardware replacement. The proposed multi-protocol gateway system's power, impact, continuous operation stability, and immunity test results obtained a normal operation success rate of over 95% and normal continuous operation results. Moreover, in the voltage drop test, instantaneous immunity test, and conductive RF electromagnetic field immunity test, it obtained an average rating result of "A".

Inverter type High Efficency Neon Transformers for Neon Tubes (인버터식 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.22-29
    • /
    • 2002
  • The conventional neon transformer systems are very bulky and heavy because it consist of leakage type transformers made of silicon steel plates. In addition, it has problems in noise by a neon transformer and in possibilities of fire and electrical shock when neon tubes are destroyed. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up, comes to the life end, encounters faults with open-circuits at the output terminals of the neon transformer, the protection circuit will be initiated to avoid more critical hazards. The input of the transformer is automatically cut off when the abnormal condition occurs, preventing waste of no-load power. To improve such problems, in this paper, a new type of neon power supply systems for neon tube is designed and implemented using inverter type circuits and a newly designed lightweight transformer. In the developed neon transformer system, a 60[Hz]power input is converted to 20[KHz]high frequency using half-wave inverters, thereby the transformer reduces its size by 1/5 in volume and 1/10 in weight.

An Improved Estimation Model of Server Power Consumption for Saving Energy in a Server Cluster Environment (서버 클러스터 환경에서 에너지 절약을 위한 향상된 서버 전력 소비 추정 모델)

  • Kim, Dong-Jun;Kwak, Hu-Keun;Kwon, Hui-Ung;Kim, Young-Jong;Chung, Kyu-Sik
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.139-146
    • /
    • 2012
  • In the server cluster environment, one of the ways saving energy is to control server's power according to traffic conditions. This is to determine the ON/OFF state of servers according to energy usage of data center and each server. To do this, we need a way to estimate each server's energy. In this paper, we use a software-based power consumption estimation model because it is more efficient than the hardware model using power meter in terms of energy and cost. The traditional software-based power consumption estimation model has a drawback in that it doesn't know well the computing status of servers because it uses only the idle status field of CPU. Therefore it doesn't estimate consumption power effectively. In this paper, we present a CPU field based power consumption estimation model to estimate more accurate than the two traditional models (CPU/Disk/Memory utilization based power consumption estimation model and CPU idle utilization based power consumption estimation model) by using the various status fields of CPU to get the CPU status of servers and the overall status of system. We performed experiments using 2 PCs and compared the power consumption estimated by the power consumption model (software) with that measured by the power meter (hardware). The experimental results show that the traditional model has about 8-15% average error rate but our proposed model has about 2% average error rate.

Improvement of PWM Driving Control Characteristics for Low Power LED Security Light (저전력형 LED 보안등의 PWM형 구동제어 특성 개선)

  • Park, Hyung-Jun;Kim, Nag-Cheol;Kim, In-Su
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.368-374
    • /
    • 2017
  • In this Paper, we developed a low power type LED security light using LED lighting that substitutes a 220[V] commercial power source for a solar cell module instead of a halogen or a sodium lamp. in addition, a PWM type drive control circuit is designed to minimize the heat generation problem and the drive current of the LED drive controller. in developed system, The light efficiency measurement value is 93.6[lm/W], and a high precision temperature sensor is used inside the controller to control the heat generation of the LED lamp. In order to eliminate the high heat generated from the LED lamp, it is designed to disperse quickly into the atmosphere through the metal insertion type heat sink. The heat control range of LED lighting was $50-55[^{\circ}C]$. The luminous flux and the lighting speed of the LED security lamp were 0.5[s], and the beam diffusion angle of the LED lamp was about $110[^{\circ}C]$ by the light distribution curve based on the height of 6[m].

A Study on the Application of the DVR in AC Electric Traction System (전기철도계통에 순간전압강하 보상장치 적용에 관한 연구)

  • 최준호;김태수;김재철;문승일;남해곤;정일엽;박성우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.6
    • /
    • pp.95-104
    • /
    • 2003
  • The electric traction systems are quite differ from general power systems which is single-phase and heavy load. Therefore, there are inevitably power quality problems such as steady state or transient voltage drop, voltage imbalance and harmonic distortion. Among these problems, since steady-state volatge drop is the one of most important factor in electric power quality, many researches about on the compensation of volatge drop by using SVC(Static Var Compensator) and/or STACOM(Static Compensator) have been studied and proposed Also, it is expected that transient voltage drop(voltage sag) could affect the control and safety of high speed traction load. In this paper, voltage sag compensation of AT(Auto Transformer) feeding system are studied The detailed transient models of utility source, scott transformer, AT, and traction load are estabilished. The application of DVR(Dynamic Voltage Restorer) in electric traction system is proposed to compensate the voltage sag of traction network which is occured by the fault of utility source. It can be shown that application of the DVR in electric traction system is very useful to compensate the volatge sag from the result of related simulation works.

Large-Scale Current Source Development in Nuclear Power Plant (원전에 사용되는 직류전압제어 대전류원의 개발)

  • Jong-ho Kim;Gyu-shik Che
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.3
    • /
    • pp.348-355
    • /
    • 2024
  • A current source capable of stably supplying current as a measurement medium is required in order to measure and test important facilities that require large-scale measurement current, such as a control element drive mechanism control system(CEDMCS), in case of dismantling a nuclear power plant. However, it can provides only voltage power as a source, not current, although direct voltage controlled constant current source is essential to test major equipment. That kind of source is not available to supply stable constant current regardless of load variation. It is just voltage supplier. Developing current source is not easy other than voltage source. Very large-scale current source up to ampere class more than such ten times of normal current is inevitable to test above mentioned equipment. So, we developed large-scale current source which is controlled by input DC voltage and supplies constant stable current to object equipment according to this requirement. We measured and tested nuclear power plant equipment using given real site data for a long time and afforded long period load test, and then proved its validity and verification. The developed invetion will be used future installed important equipment measuring and testing.

A Low-Voltage Low-Power Analog Front-End IC for Neural Recording Implant Devices (체내 이식 신경 신호 기록 장치를 위한 저전압 저전력 아날로그 Front-End 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.34-39
    • /
    • 2016
  • A low-voltage, low-power analog front-end IC for neural recording implant devices is presented. The proposed IC consists of a low-noise neural amplifier and a programmable active bandpass filter to process neural signals residing in the band of 1 Hz to 5 kHz. The neural amplifier is based on a source-degenerated folded-cascode operational transconductance amplifier (OTA) for good noise performance while the following bandpass filter utilizes a low-power current-mirror based OTA with programmable high-pass cutoff frequencies from 1 Hz to 300 Hz and low-pass cutoff frequencies from 300 Hz to 8 kHz. The total recording analog front-end provides 53.1 dB of voltage gain, $4.68{\mu}Vrms$ of integrated input referred noise within 1 Hz to 10 kHz, and noise efficiency factor of 3.67. The IC is designed using $18-{\mu}m$ CMOS process and consumes a total of $3.2{\mu}W$ at 1-V supply voltage. The layout area of the IC is $0.19 mm^2$.

Design of an Active Shaft Grounding System for the Elimination of Alternating Electromagnetic Field in Vessel (선체 교류 전자장 제거를 위한 능동 축 접지 시스템 설계)

  • Kim, Tae-kue;Ahn, Ho-kyun;Yoon, Tae-sung;Park, Seung-kyu;Kwak, Gun-pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1515-1524
    • /
    • 2015
  • Recently, for the purpose of preventing the corrosion of a vessel, the electrical corrosion protection device that prevents the corrosions of the hull and the propeller is widely used. However, the electrical corrosion protection method artificially emits the current into the seawater around the hull using the power supply in order to make the hull and propeller be in the state of not being corrosion, so that electromagnetic field is generated outside the hull by the current emitted into the seawater. In this paper, the static and alternating constituents of the electromagnetic field generated in underwater outside the hull are analyzed and a countermeasure is investigated to reduce the strength of the electromagnetic field. In conventional shaft grounding system, the shaft potential is maintained above at least 100mV and the alternating current component constitutes more than 10% of the total current. However, in this paper, a control system was designed in order that the alternating current component and the shaft potential which generate electromagnetic field are maintained within 1% and 2mV respectively, and the performance was verified by simulation.

Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System (KSTAR 전류전송계통 진공배기계 구축 및 시운전)

  • Woo, I.S.;Song, N.H.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, Jae-Sik;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • Current feeder system (CFS) for Korea superconducting tokamak advanced research(KSTAR) project plays a role to interconnect magnet power supply (MPS) and superconducting (SC) magnets through the normal bus-bar at the room temperature(300 K) environment and the SC bus-line at the low temperature (4.5 K) environment. It is divided by two systems, i.e., toroidal field system which operates at 35 kA DC currents and poloidal field system wherein 20$\sim$26 kA pulsed currents are applied during 350 s transient time. Aside from the vacuum system of main cryostat, an independent vacuum system was constructed for the CFS in which a roughing system is consisted by a rotary and a mechanical booster pump and a high vacuum system is developed by four cryo-pumps with one dry pump as a backing pump. A self interlock and its control system, and a supervisory interlock and its control system are also established for the operational reliability as well. The entire CFS was completely tested including the reliability of local/supervisory control/interlock, helium gas leakage, vacuum pressure, and so on.

A Study to Improve the DC Output Waveforms of AFE Three-Phase PWM Rectifiers (AFE 방식 3상 PWM 정류기의 직류 출력파형 개선에 관한 연구)

  • Jeon, Hyeon-Min;Yoon, Kyoung-Kuk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.739-745
    • /
    • 2017
  • Many studies have been conducted to reduce environmental pollution by ships and reduce fuel consumption. As part of this effort, research on power conversion systems through DC distribution systems that link renewable energy with conventional power grids has been pursued as well. The diode rectifiers currently used include many lower harmonics in the input current of the load and distort supply voltage to lower the power quality of the whole system. This distortion of voltage waveforms causes the malfunctions of generators, load devices and inverter pole switching elements, resulting in a large number of switching losses. In this paper, a controller is presented to improve DC output waveforms, the input Power Factor and the THD of an AFE type PWM rectifier used for PLL. DC output voltage waveforms have been improved, and the input Power Factor can now be matched to the unit power factor. In addition, the THD of the input power supply has been proven by simulation to comply with the requirements of IEEE Std514-2014.