• Title/Summary/Keyword: 전원임피던스

Search Result 154, Processing Time 0.025 seconds

A Chip Design of Body Composition Analyzer (체성분 분석용 칩 설계)

  • Bae, Sung-Hoon;Moon, Byoung-Sam;Lim, Shin-Il
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.26-34
    • /
    • 2007
  • This Paper describes a chip design technique for body composition analyzer based on the BIA (Bioelectrical Impedance Analysis) method. All the functions of signal forcing circuits to the body, signal detecting circuits from the body, Micom, SRAM and EEPROMS are integrated in one chip. Especially, multi-frequency detecting method can be applied with selective band pass filter (BPF), which is designed in weak inversion region for low power consumption. In addition new full wave rectifier (FWR) is also proposed with differential difference amplifier (DDA) for high performance (small die area low power consumption, rail-to-rail output swing). The prototype chip is implemented with 0.35um CMOS technology and shows the power dissipation of 6 mW at the supply voltage of 3.3V. The die area of prototype chip is $5mm\times5mm$.

CMOS Transimpedance Amplifiers for Gigabit Ethernet Applications (기가비트 이더넷용 CMOS 전치증폭기 설계)

  • Park Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.16-22
    • /
    • 2006
  • Gigabit transimpedance amplifiers are realihzed in submicron CMOS technologies for Gigabit Ethernet applications. The regulated cascode technique is exploited to enhance the bandwidth and noise performance simultaneously so that it can isolate the large input parasitic capacitance including photodiode capacitance from the determination of the bandwidth. The 1.25Gb/s TIA implemented in a 0.6um CMOS technology shows the measured results of 58dBohm transimpedance gain, 950MHz bandwidth for a 0.5pF photodiode capacitance, 6.3pA/sqrt(Hz) average noise current spectral density, and 85mW power dissipation from a single 5V supply. In addition, a 10Gb/s TIA is realized in a 0.18um CMOS incorporating the RGC input and the inductive peaking techniques. It provides 59.4dBohm transimpedance gain, 8GHz bandwidth for a 0.25pF photodiode capacitance, 20pA/sqrt(Hz) noise current spectral density, and 14mW power consumption for a single 1.8V supply.

Novel Model for Nonlinearity of Traveling-Wave Electroabsorption Modulator according to Microwave Characteristics (마이크로파 특성에 따른 진행파형 전계흡수 변조기의 비선형 모델)

  • 윤영설;이정훈;최영완
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.580-587
    • /
    • 2003
  • In this paper, we introduce a novel model to analyze the linearity of a TW-EAM (traveling-wave electroabsorption modulator). The device length, microwave loss (ML), and internal reflection (IR) due to impedance mismatch have effect on the linearity of a TW-EAM. The longer devices have characteristics of lower biases with minimum IMDS (intermodulation distortions). ML decreases the output power as well as the IMD value. Internal reflection has different nonlinear characteristics according to the wavelength of the input frequency and the device length. There is little change in SFDR (spurious-free dynamic range) due to ML or IR. As a result, for a 50 GHz band RF-optical communication system, a 0.8 mm-long TW-EAM with the lowest ML would have better properties by using n, which is caused by impedance, mismatch at the output port.

A Study on the Efficiency Improvement of Dye Sensitized Solar Cell (염료감응형 태양전지의 효율향상에 관한 연구)

  • Kim, Hee-Je;Seok, Young-Kuk;Kim, Ming-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.06a
    • /
    • pp.467-470
    • /
    • 2009
  • A novel 8 V DC power source with an external series-parallel connection of 50 Dye-Sensitized Solar Cells(DSSCs) has been proposed. One DSC has the optimized length to width ratio of $5.2{\times}2.6$ cm and an active area 8 $cm^2$($4.62{\times}1.73$ cm) which attained a conversion efficiency of 4.2%. From the electrochemical impedance spectroscopic analysis, it was found that the resistance elements related to the Pt electrode and electrolyte interface behave like that of diode and the series resistance corresponds to the sum of the other resistance elements. In addition, the TEMoo mode pulsed Nd:YAG laser beam is used to improve the incident photon to current efficiency(IPCE) of DSSC. From this result, this novel 8V-0.38A DC power source shows stable performance with an energy conversion efficiency of about 4.5% under 1 sun illumination(AM 1.5, Pin of 100 $mW/cm^2$).

  • PDF

A Study on Steady State Characteristics of LLC Resonant Half Bridge Converter Considering Internal Losses (내부 손실이 고려된 LLC 공진형 하프브릿지 컨버터의 정상상태 특성에 관한 연구)

  • Ahn, Tae-Young
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.985-991
    • /
    • 2018
  • In this paper, an equivalent circuit reflecting the internal loss of the LLC resonant half bridge converter was proposed and a steady state characteristic equation including the loss factors was derived. Using the results, the frequency characteristics of I/O voltage gain and input impedance were compared with the lossless model In order to verify the proposed model and the derived equation, the main components of the 1kW class LLC resonant half bridge converter were selected under the same conditions and the steady state characteristics such as voltage gain and input impedance were compared. In particular, to compare more closely the steady state error of the two models, we observed the change in switching frequency with respect to the load current, which is considered to be the most important in the actual circuit design stage. As a result, it is confirmed that the error of the operating frequency is significantly improved from the proposed model and the analysis result.

Design of EMI reduction of Electric Vehicle Wireless Power Transfer Wireless Charging Control Module with Power Integrity and Signal Integrity (전원무결성과 신호무결성을 갖는 전기차 무선전력전송 무선충전컨트롤모듈 EMI 저감 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.452-460
    • /
    • 2021
  • As the global electric vehicle (EV) market expands, eco-friendly EV that complement performance and safety problems continue to be released and the market is growing. However, in the case of EVs, the inconvenience of charging, safety problems such as electric shock, and electromagnetic interference (EMI) problems caused by the interlocking of various electronic components are problems that must be solved in EVs. The use of wireless power transmission technology can solve the problem of safety by not dealing with high current and high voltage directly and solving the inconvenience of charging EVs. In this paper, in order to reduce EMI a wireless charging control module, which is a key electronic component of WPT of EV. EMI reduction was designed through simulation of problems such as resonance and impedance that may occur in the power supply and signal distortion between high-speed communication that may occur in the signal part. Therefore, through the EMI reduction design with power integrity and signal integrity, the WPT wireless charging control module for electric vehicles reduces 10 dBu V/m and 15 dBu V/m, respectively, in 800 MHz to 1 GHz bands and 1.5 GHz bnad.

A Study on Over Current Protection Method of Unified Power Quality Conditioners (통합 전력품질 제어기의 과전류 보호방법에 관한 연구)

  • 이우철;김한정
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.22-28
    • /
    • 2002
  • A protection scheme for Unified Power Quality Conditioner (UPQC) is presented and analyzed in this paper. The proposed UPQC has the series active power filter operated as a high impedance k($\Omega$) to the fundamentals when the over current occurs in the power distribution system, and three control strategies are proposed in this paper. The first is the method by detecting the fundamental source current through the p-q theory,[1] the second is the method by detecting the fundamental component of load current in Synchronous Reference Frame(SRF) and the third is the method by detecting the input voltage. When the over current occurs in the power distribution system, the proposed scheme protects the UPQC without additional protection circuits. The validity of proposed protection scheme is investigated through simulation results.

The Characteristics Analysis of The PCB Pattern for The Mobile panel Power Supply on The PMIC (모바일 패널 전원 공급을 위한 PMIC의 PCB 패턴의 특성 분석)

  • Chung, Sung-In;Kim, Seo-Hyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.39-44
    • /
    • 2011
  • This purpose of this study is to propose the characteristics analysis of the PCB pattern designed two modes for the output voltage value on the PMIC through converting the limited voltage value inputted from a battery. The PCB design technology has been undergoing difficulty in getting the related technology in a domestic market because of increasing EMI/EMC, Cross-talk, Impedance. And it requires to have the appropriate clearance between the patterns and the technology of PCB pattern width with a amperage according to various uses. The study carried out the characteristics analysis of the PCB pattern designed from a direct output method without a capacitor[mode1], to an output method through a capacitor[mode2] for PMIC output voltage value. Besides, we calculated the pattern width with a amperage using the equation suggested by IPC-2221, presenting the right way of the layout design to analyze the trouble with the test. Therefore, this study is expected to contribute not only to applying the PMIC design for the mobile panel power supply, but also helping the design and application technology in various areas such as car control, camera, note-book, computer, PDA, etc.

4-Channel 2.5-Gb/s/ch CMOS Optical Receiver Array for Active Optical HDMI Cables (액티브 광케이블용 4-채널 2.5-Gb/s/ch CMOS 광 수신기 어레이)

  • Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.22-26
    • /
    • 2012
  • This paper introduces a 2.5-Gb/s optical receiver implemented in a standard 1P4M 0.18um CMOS technology for the applications of active optical HDMI cables. The optical receiver consists of a differential transimpedance amplifier(TIA), a five-stage differential limiting amplifier(LA), and an output buffer. The TIA exploits the inverter input configuration with a resistive feedback for low noise and power consumption. It is cascaded by an additional differential amplifier and a DC-balanced buffer to facilitate the following LA design. The LA consists of five gain cells, an output buffer, and an offset cancellation circuit. The proposed optical receiver demonstrates $91dB{\Omega}$ transimpedance gain, 1.55 GHz bandwidth even with the large photodiode capacitance of 320 fF, 16 pA/sqrt(Hz) average noise current spectral density within the bandwidth (corresponding to the optical sensitivity of -21.6 dBm for $10^{-12}$ BER), and 40 mW power dissipation from a single 1.8-V supply. Test chips occupy the area of $1.35{\times}2.46mm^2$ including pads. The optically measured eye-diagrams confirms wide and clear eye-openings for 2.5-Gb/s operations.

Analysis of Transient Potential Rises of Horizontal Ground Electrodes Considering the Frequency-Dependent of Soil (토양의 주파수의존성을 고려한 정보통신설비용 수평접지전극의 과도전위상승 분석)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • The lightning protection of information and communication facilities is very important factor to improve a reliability of the action of these equipment. Especially the transient potential rise of ground electrode being injected with the lightning current is to be a basic data of the dielectric strength for both power and communication facilities so that more accurate analysis should be required. The transient potential rise can be calculated from the ground impedance and the ground impedance is strongly dependent upon the shape of the ground electrode and the frequency-dependence of soil. The Debye's equation which is able to calculate the characteristics of dielectrics is used to analyze the frequency-dependent of soil. Also, the method to calculate the transient potential rise from the ground impedance is specified in this paper. In order to analyze the transient potential rise resulting from calculations with Debye's equation, TLM(transmission line method) and case of ${\rho}$(resistivity)-constant are simulated, respectively. The length of a horizontal ground electrode is 30 m and simulations were performed at 10, 100, $1000{\Omega}{\cdot}m$ with the standard lightning current waveform. In result, the transient potential rise of horizontal ground electrode calculating with Debye's equation is lower than it of other models.